

GCSE Maths Higher Booklet 2

Name:	•	•	•	•	• •			•	•	•	•	•	•	•	•	•	•		•	•				, ,	• •	•	•	•	•	•		•	•	•	•	
Set:	2		_	2	200		9 2			_	2	120											<u> </u>				200		. 2	2002	2 2					

Number, standard form, rounding etc.

(a)	Circle the be	st approximate v	value for the follow $\frac{596.3}{38.2 + 11.5}$	ing calculation.		[1]
1	110	12	11	120	10	
'b)	This is done	increased by 4% 7 times, each tim Iltiplier that you v	of its value. ne increasing the p would use to find the	previous value by 4 ne value after the 1	4%. 7 increases.	[1]
	× 1·04 ⁷	× 1·4 ⁷	× 0·04 ⁷	× 1·04 ⁶	× 1·28	
(c)	Calculate $\frac{4}{5}$	÷ 1/4.				
	Circle the cor	rect answer.				[1]
	$1\frac{3}{5}$	<u>1</u> 5	<u>5</u> 16	5	$3\frac{1}{5}$	

					2	
					a a	

3300U601 05

(a)	The highest common factor (HCF) of 30 and 75 is the square root of a number. What is the number?	[2]
		v
'b)	The cube root of 32.768 is $33\frac{1}{3}$ % of a number. What is the number?	[2]
	vvnat is the number?	[2]

		1

5. (a) Express 0.00042 in standard form.

[1] on

(b) Calculate the value of $\frac{7.2 \times 10^6}{2 \times 10^{-2}}$.

Give your answer in standard form.

[1]

(c) Calculate the value of $(4.7 \times 10^5) - (6.2 \times 10^4)$. Give your answer in standard form.

[2]

ind the answer to the following number problem.	[5]
'(the LCM of 12, 18 and 24) ÷ (the HCF of 36 and 54)'.	
(The 2011 of 12, 10 and 24).	
······································	

	And place a provincial

(a)	Calculate the value of $(2 \times 10^{-4}) \times (7.8 \times 10^{9})$. Give your answer in standard form.	[2]
	Give your answer in standard form.	[2]
(b)	Calculate the value of $\frac{3.9 \times 10^8}{3000}$.	
	Give your answer in standard form.	[2]
act	orise $12x^2 + 3xy$.	[2]

1	n this question, you will be assessed on the quality of your organisation and communication.
F	A whole number is written on a card.
}	ou are given three clues to help you work out the number on the card.
(Clue 1 : Double the number is between 8 and 18 inclusive.
(Clue 2 : The number is a prime number.
(Clue 3 : The number is not a factor of 100.
	What is the number on the card? You must show all your working. [3 + 1 OC]
2.2	
	The number on the card is

4.	(a)	Make m the subject of the formula	y=6m+7.	[2]

(b)	Factorise	$6x^2 - 12x$.	[2]

5.	Find	the	value	of eac	h of the	following	in	standard	form.

(a)	$\frac{7.5 \times 10^6}{5000}$				[2	2

(b)
$$(2.3 \times 10^3) + (6.4 \times 10^4)$$
 [2]

3300U501

H matha June 2018 112

1	Examiner
	only

		ш
13.	The values a = 27, b = 1.9 and c = 0.81 are each correct to 2 significant figures.	
	Use the formula $d = \frac{a-b}{c}$ to calculate the least value of d .	
	You must show all your working. [3]	
		-

Algebra, Solving Equators, not term, Inequalities

solution of the equation		
	$x^3 + 2x = 91$	
es between 4 and 5.		
se the method of trial and improver ou must show all your working.	ment to find this solution correct to 1 decimal place.	[4]
*		
	······································	

madhs	I+H	Tue	4.201	95	W2

Examiner only

A solution of the equation	
$x^3 - 7x - 51 = 0$	
lies between 4 and 5.	
Use the method of trial and improvement to find this solution correct to 1 decimal place. You must show all your working. [4 +	e. 2 O

١.	A solution to the equation	
	$2x^3 - 3x - 17 = 0$	
	lies between 2 and 3.	
	Use the method of trial and improvement to find this solution correct to 1 decimal place. You must show all your working.	[4]
	,	

2. The *n*th term of a sequence is given by $n^2 + 7$.

Write down the first three terms of this sequence.

[2]

1st term =

2nd term =

3rd term =

Circle the correct answer for each of the following.

(a) $x^3 \times x^6 =$

[1]

 x^{36}

 $x^{0.5}$

 x^2

 x^9

 x^{18}

(b) (7x-5y)-(3x+2y)=

[1]

[1]

4x - 3y 4x - 7y 4x + 3y -4x + 7y -4x - 7y

A car travels x miles in 30 minutes. Its average speed in miles per hour is

2x

30x

6.	In this question you will be assessed on the quality of your organisation, communication and accuracy in writing.
	Each side of a square is of length $(2x + 3y)$ cm. The perimeter of the square is 62 cm. $(2x + 3y)$ cm
	Each side of a regular octagon is of length $(x + 2y)$ cm. The perimeter of the octagon is 72 cm. $(x + 2y)$ cm
	Use an algebraic method to find the value of x and the value of y . [5 + 2 OCW]
	<i>x</i> = <i>y</i> =

110	_	0017	
U2	clino	201	
Constitution	001.0		

3.	A solution to the equation	Ex
	$x^3 - 2x - 45 = 0$	
	lies between 3 and 4.	
	Use the method of trial and improvement to find this solution correct to 1 decimal place. You must show all your working.	4]

		•••

		3000

2(x+y)=	7v - 3

Give your answer in its simplest form.

Write down the nth term of the following sequence. [2]

3, 11, 6, 18, 27,

[3]

-	UI June 2017 11
	Calculate the value of $(5.41 \times 10^5) + (2.3 \times 10^4)$. Give your answer in standard form. [2]
	In this question, you will be appeared on the question of counting winting and wether a first counting and the second country.
	In this question, you will be assessed on the quality of your linguistic and mathematical accuracy in writing.
	Rashid owned n sheep. Eifion had exactly 4 times as many sheep as Rashid.
	Rashid buys 17 extra sheep. Eifion sells 8 of his sheep.
	Eifian still has more shoon than Deshid
	Eifion still has more sheep than Rashid.
	Form an inequality, in terms of n . Solve the inequality to find the least value of n .
	Form an inequality, in terms of <i>n</i> .
	Form an inequality, in terms of n . Solve the inequality to find the least value of n .
	Form an inequality, in terms of n . Solve the inequality to find the least value of n .
	Form an inequality, in terms of n . Solve the inequality to find the least value of n .
	Form an inequality, in terms of n . Solve the inequality to find the least value of n .
	Form an inequality, in terms of n . Solve the inequality to find the least value of n .
	Form an inequality, in terms of n . Solve the inequality to find the least value of n . You must show all your working. [5 + 1 W
	Form an inequality, in terms of n . Solve the inequality to find the least value of n . You must show all your working. [5 + 1 W
	Form an inequality, in terms of n . Solve the inequality to find the least value of n . You must show all your working. [5 + 1 W
	Form an inequality, in terms of <i>n</i> . Solve the inequality to find the least value of <i>n</i> . You must show all your working. [5 + 1 W

3. William Lois ha	has n marbles. d 4 times as many marbles as William, but she has now lost 23 of them.	10000000	xamir only
	ll has more marbles than William.		
Write o	own an inequality in terms of n to show the above information. ur inequality to find the least number of marbles that William may have.	[4]	

		257	
		Ø II	

	[4]
3x + 4y = 7 $2x - 3y = 16$	

TH	maths	Nov 13,2017	111
1 0 (, actives	1000	00

olve the following simultaneous e	equations using an alg	ebraic (not graphical) method.	[4]
	4x - 3y = 2 $6x - 5y = 1$		

Factorise $x^2 - 7x$	– 18, and hence s	solve $x^2 - 7x - 18$	=0.	[3]

Show that $(10w + 3)(w - 1) - (2 - 3w)^2 \equiv w^2 + 5w - 7$.	[4]
Use the quadratic formula to solve the equation $w^2 + 5w - 7 = 0$. Give your answers correct to 2 decimal places.	[3]
Use the quadratic formula to solve the equation $w^2 + 5w - 7 = 0$. Give your answers correct to 2 decimal places.	[3]
Use the quadratic formula to solve the equation $w^2 + 5w - 7 = 0$. Give your answers correct to 2 decimal places.	[3]
Use the quadratic formula to solve the equation $w^2 + 5w - 7 = 0$. Give your answers correct to 2 decimal places.	[3]
Use the quadratic formula to solve the equation $w^2 + 5w - 7 = 0$. Give your answers correct to 2 decimal places.	[3]
Give your answers correct to 2 decimal places.	
Give your answers correct to 2 decimal places.	
Give your answers correct to 2 decimal places.	
Give your answers correct to 2 decimal places.	
Give your answers correct to 2 decimal places.	
Give your answers correct to 2 decimal places.	
Give your answers correct to 2 decimal places.	
Give your answers correct to 2 decimal places.	

	Examiner
,	only

	••••••			
,				
		4 2 5	. 1 . 20	
(b)	Solve the equat	ion $\frac{4x-3}{2} + \frac{7x}{6}$	$\frac{+1}{5} = \frac{29}{2}$.	
		2	, 2	

© WJEC CBAC Ltd.

(3300U60-1)

Turn over.

Express $\frac{3x}{3x+2} - \frac{2x}{2x+7}$ as a single fraction in its simple	Cot IVIIII.	[3]
		0
		- "
		7
		5100

12.	The The	different squares are constructed. side length of the smaller square is x cm. side length of the larger square is 3 cm longer than the side length of the smaller square combined area of the two squares is 22.5 cm ² .	uare.
	(a)	Show that $4x^2 + 12x - 27 = 0$.	[4]

	(b)	Find the dimensions of each of the squares. Do not use a trial and improvement method. You must show all your working and justify any decision that you make.	[5]
		Side length of smaller square = cm Side length of larger square = cm	

UZ NOV 2016 14

(a) Factorise $(x-7)^2 + 2(x-7)$.	[2]	Exa
(b) Factorise $12x^2 - 27y^2$.	[3]	

13. A ball is thrown upwards from a height of 1 m above the	e ground.
---	-----------

After t seconds, its height above the ground is h metres, where h is given by

$$h = 1 + 8t - 5t^2$$
.

Show that the time taken to reach a height of 4 metres satisfies the equation

$$5t^2 - 8t + 3 = 0.$$

[1]

(b) Solve the equation

$$5t^2 - 8t + 3 = 0.$$

[3]

Interpret your answer to part (b) in the context of the question. [1] (c)

2.	Make c the subject of the following formula. Give your answer in its simplest form. [5]	Exam only				
	Give your answer in its simplest form. [5]					
	$c - 5 = \frac{3c - 7}{d}$					
		2				

∕lake :	x the subjec	ct of the followi	a(x-b) =	x(c-d)			[4]
					pi.		
			***************************************	***********	**********		
					***************************************	***************************************	

Ť	Examine
	only

$\frac{2}{3x-5} - \frac{7}{11x-13}$	
32-3 112-13	

Give your answ	tic formula to solve $(3x - 1)^2 = x(2x + 3) + 7$. vers correct to 2 decimal places.	

H maths Nov 2017 UI

Simplify	$\frac{12x + 16}{9x^2 - 16} .$		40.11	[4]

				- ,

Maths Suc 20, 20 U2 solve the equation $(2x + 5)(3x - 11) = 7$.	
olve the equation $(2x + 5)(3x - 11) = 7$. ive your answers correct to 2 decimal places.	[5]

$\sqrt{gc^2 - v} = c$	

thappras' Theorem and Trigonometry

5

only

A right-angled triangle LMN is shown below. LN = 16.9 cm and LM = 6.5 cm.

Diagram not drawn to scale

Calculate the length MN.	[3]

[3]

6. Calculate the length of the side QR in the triangle PQR shown below.

Diagram not drawn to scale

 *************************	 	***************************************	

I+H madhs Tue 2018 42

Examiner only

5. PQR is a right-angled triangle, as shown below. PQ = 1.41 m and PR = 0.89 m.

Diagram not drawn to scale

Calculate the length of QR.	[2]
	1 , 4

7. The diagram shows two right-angled triangles, joined together along a common side.

 $\hat{SPQ} = 90^{\circ}$, $\hat{SQR} = 90^{\circ}$, $\hat{SQP} = 38^{\circ}$, $PS = 8 \, \text{cm}$ and $QR = 15 \, \text{cm}$.

Diagram not drawn to scale

Calculate the size of angle <i>x</i> .		[6]

In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

In the triangle ABC shown below, $\widehat{BAC} = 40^{\circ}$ and $\widehat{ACB} = 80^{\circ}$. X is a point on side AC such that BX = BC.

Diagram not drawn to scale

Prove that $AX = BX$.	
Give reasons for each step of your pr	oof.
You must show all your working.	

[5 + 2 OCW]

9. ABC and CDE are two right-angled triangles.

In triangle ABC, $AB = 6.5 \,\text{cm}$ and $BC = 10.4 \,\text{cm}$. In triangle CDE, $CE = 9.4 \,\text{cm}$.

$$A\widehat{C}B = x^{\circ}$$
.

Diagram not drawn to scale

(a)	Calculate the value of x .	[3]

THI!	maths	June	_ 20	18 U	2	Ex
(b) Hen	ce find the length					[3]

Examiner

11. In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

The area of triangle ABD, shown in the diagram below, is $35 \, \text{cm}^2$. $AD = 5 \, \text{cm}$ and $BC = 32 \, \text{cm}$.

D is on the line AC, and BD is perpendicular to AC.

Diagram not drawn to scale

Calculate the size of angle x . You must show all your working.	[5 + 2 OCW]
¥	

21. The cube below has an internal diagonal of length 20 cm. Each edge of the cube is of length x cm.

Diagram not drawn to scale

Calculate the value of x . You must use an algebraic method and show all your working.	[4]

END OF PAPER

18. The graph of $y = x^2$ has been drawn below, for values of x from x = 0 to x = 6.

estimate the area of the shaded region shown above.	[4]

Use the trapezium rule, with the ordinates x = 0, x = 1, x = 2, x = 3, x = 4, x = 5 and x = 6, to

<i>(b)</i> us	e the expression	you found in part (a) to complete the fo	ollowing table.	[2]
	x	36	49		
	у	30		40	

	d an expression	for y in terms of x ,			[3]
o) use	e the expression	you found in (a) to cor	nplete the following	ng table.	[2]
	e 9 - 10 - 45 .				
	X	3	0.25		
	y	4		<u>1</u> 5	-
	,			5	
					i

		-		x = 2,	
(a) fin	d an expression f	for y in terms of x ,			Ι

<i>(b)</i> us	e the expression	you found in part <i>(a</i>) to complete the fo	llowing table	9
(2)	- the expression	you round in part (a	y to complete the le	Towning table.	d
	X	2	10		
		120		15	
	<i>y</i>	120		15	
ska-se-s					
« L					
L					
					•••••

© WJEC CBAC Ltd.

(3300U50-1)

Examiner only

Congruent Triangles

H mather Two 2018 11

Examiner only

12. In the diagrams below, only two pairs of triangles are **definitely** congruent. Identify the two pairs.

In each case, state the condition of congruency.

[4]

A 3-9 cm 65° 4-4 cm

5·1 cm 3·9 cm 4·4 cm

Diagrams not drawn to scale

Triangleis congruent to triangle

Condition of congruency:

Triangleis congruent to triangle

Condition of congruency:

14. SSS, SAS, ASA and RHS are notations used to describe the conditions required to prove that two triangles are congruent.

[S ≡ Side, A ≡ Angle, R ≡ Right angle and H ≡ Hypotenuse.]

The following triangles are **not** drawn to scale. For each pair of triangles, circle the correct statement.

(a)

[1]

congruent:

congruent: SAS congruent: ASA congruent:

definitely not congruent

not necessarily congruent

(b)

[1]

congruent:

congruent: SAS congruent: ASA congruent: RHS definitely not congruent

not necessarily congruent

(c)

[1]

congruent: SSS congruent: SAS

congruent: ASA congruent: RHS

definitely not congruent

not necessarily congruent

© WJEC CBAC Ltd.

(3300U50-1)

H maths nov 2017 11

14. The two triangles shown below are not drawn to scale.

Examiner only

Which **one** of the following statements is correct? Give full reasons for your answer.

[2]

- A: the triangles must be congruent
- B: the triangles could be congruent
- C: the triangles cannot be congruent

The correct statement is

This is because

Diagram not drawn to scale

P and Q are points on AB and AC respectively such that AP = AQ.

Prove that triangle <i>ABQ</i> is congruent to triangle <i>ACP</i> . You must give reasons for each step of your proof.	[4]
D D	
•	

only

Examin	•
only	

- Calculate $\sqrt{8.5^3 + (4.5 0.76)^2}$, correct to 3 significant figures. 1. [2]
 - Calculate the reciprocal of -0.07, correct to 1 decimal place. [2]

Show that the triangle below is **not** a right-angled triangle. [5]

Diagram not drawn to scale

3. ABC is an isosceles triangle with AB = AC.

Diagram not drawn to scale

Calculate the value of	of y.		[6]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		 	

Arc length, Area of Sector, Sine and Cosine Rule
42 June 2017 14

Examiner only 13. 46° 5-3 cm 6.4 cm Diagram not drawn to scale By first calculating the size of \widehat{BAC} , calculate the area of triangle ABC. You must show all your working. [5]

14. Points *E* and *F* lie on a circle, centre *O*. The radius of the circle is 10 cm. The area of the shaded sector is 65 cm².

Diagram not drawn to scale

(a) Calculate the size of EOF.	[3]
(b) Hence, calculate the length of the arc <i>EF</i> .	[2]
(b) Hence, calculate the length of the arc EF.	[2]
(b) Hence, calculate the length of the arc EF.	[2]
(b) Hence, calculate the length of the arc EF.	[2]
(b) Hence, calculate the length of the arc EF.	[2]
(b) Hence, calculate the length of the arc EF.	[2]
(b) Hence, calculate the length of the arc EF.	[2]

Diagram not drawn to scale

***************************************	***************************************	 •	

17. ABC represents the **sector** of a circle with radius 7 cm and centre A, as shown below. $B\widehat{AC} = x^{\circ}$, AD = 3 cm and BD = 6 cm.

Diagram not drawn to scale

Find the area of the shaded region E	BCD.	[8]
	······································	
	END OF PAPER	

18. A 9-pointed star, with centre *O*, is shown below. Each side of the star is of length *x* cm.

The distance from the centre to every **inner** vertex of the star is 7 cm. The distance from the centre to every **outer** vertex of the star is 10 cm.

Diagram not drawn to scale

(a) Calculate the perimeter of the s	star.	[5]
		-

c) Calculate the area of the star.	[3]

It mather nov 2317 11

Examiner only

1.	Look at the following descriptions of special quadrilateral shapes.	
	Circle the correct name for each one.	

(a) Its diagonals intersect at 90°.Only one diagonal is a line of symmetry.

[1]

Kite Rhombus

Trapezium

Rectangle

(b) Only one pair of sides are parallel.

[1]

Kite

Rhombus

Square

Trapezium Rectangle

(c) All four sides are equal.

Its diagonals are not equal in length.

[1]

Kite

Rhombus

Square

Square

Trapezium

Rectangle

4. A triangular prism of length 2 metres is shown below.

Diagram not drawn to scale

AC = 21 cm, BC = 35 cm and $B\widehat{AC} = 90^{\circ}$.

(a) In this part of the question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

Calculate the area of triangle ABC.

Give your answer in cm².

You must show all your working.

[5 + 2 OCW]

***************************************	***************************************	 	 • •
		 	 ••
			 **

			••

I+H Mallo Nov 2017 412

Calculate the volume of the prism.You must give the units of your answer.	ľ	
	••••••	

6. In the following formulae, each measurement of length is represented by a letter.

Consider the dimensions implied by the formulae.

 $d^3 + dwh$

Write down, for each case, whether the formula could be for a length, an area, a volume or none of these.

8

The first one has been done for you.

[3]

<u>Formula</u>	Formula could be for
$d^3 - 3 \cdot 14r^2h$	volume
$d^2 + hw$	
d + w + h	
$2\pi r - \pi r^2$	
(d+h)w	

It H moths June 2015 112

7. The diagrams below show two similar shapes, ABCD and PQRS.

Diagrams not drawn to scale

(a) Calculate the value of x. [2]

(b) Calculate the value of y. [2]

(c) Explain clearly why the following statement cannot be true.	[2]
'The length of CD is 3.9 cm and the length of RS is 6.5 cm	1'.

[5]

8. A rectangle of length 12 cm and width (2x - y) cm has an area of 72 cm².

Diagram not drawn to scale

KLMN is a kite where KL = 3x cm and LM = y cm.

Diagram not drawn to scale

The perimeter of the kite $KLMN = 33 \, \text{cm}$.

Do not use a trial and improvement method.

Calculate the values of x and y.

You must show all your working.

- 9. Circle the correct answer for each of the following statements.
 - (a) $9^{-\frac{1}{2}}$ is equal to

-3

 $-\frac{1}{3}$

 $\frac{1}{4\frac{1}{2}}$

 $-4\frac{1}{2}$

 $\frac{1}{3}$

[1]

(b) $8^{\frac{2}{3}}$ is equal to

 $5\frac{1}{3}$

4

6

 $8\frac{2}{3}$

16 24 [1]

10. The radius of a hemisphere and the radius of a cylinder are equal. The hemisphere and cylinder have equal volumes.

Calculate the ratio of the height of the cylinder to the radius of the cylinder.

[3]

height of cylinder : radius of cylinder

=

10. A cylinder just fits inside a hollow cube with sides of length $m \, \text{cm}$.

Diagram not drawn to scale

The radius of the cylinder is $\frac{m}{2}$ cm.

The height of the cylinder is $m \, \text{cm}$.

The ratio of the volume of the cube to the volume of the cylinder is given by

volume of cube: volume of cylinder

 $= k : \pi$,

where k is a number.

Find the value of k.

You must show all your working.	[4]

-+14	maths	NOV 5	2017	ul	 ŢΕ

	•••••				
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	······			

7 200	
Factorise $4m^2 - 289$.	[2]
Calculate the volume of a pyramid with a base area of 13 200 cm ² 60 cm.	and a perpendicular height of
Give your answer in m ³ .	[3]
	- 1
<\-\-\-\\\\	
Diagram not drawn to scale	

H maths Nov 2014 42

Examiner only

11. A cone is joined to a cylinder, as shown below. The cone has a base radius of 11 cm and a slant height of 13 cm. The cylinder has the same radius, 11 cm, and a height of 17 cm. Calculate the total surface area of the composite solid.

[4]

Diagram not drawn to scale

••••••	********	 		
	***************************************	 		***************************************

		10		
	·····	 		

Total surface area = cm²

1. Aled Two o The t	has three concrete slabs. of the slabs are square, with each side of length x metres. Third slab is rectangular and measures 1 metre by $(x + 1)$ metres. Three concrete slabs cover an area of 7m^2 .	E
(a)	Show that $2x^2 + x - 6 = 0$.	[1]
(b)	Solve the equation to find the length of each side of the square slabs. You must justify any decisions that you make.	[4]

Examiner **15.** Two **similar** pyramids have volumes of 3970 cm³ and 3100 cm³ respectively. The height of the larger pyramid is 25 cm. Calculate the height of the smaller pyramid. only [3] Height =cm

3 cm	13 cm	31 cm 21 cm			
3 cm	13 cm	21 cm			
	Diagram	not drawn to sca	ıle		
greatest poss	sible area of th	ne shaded regior	I.		[3
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		greatest possible area of the	greatest possible area of the shaded region	greatest possible area of the shaded region.	

(3300U60-1)

© WJEC CBAC Ltd.

Turn over.

		aram chowe	two rea	rtangles		
	THE GIA	gram shows	wored	stangles.		
				(x-3) cm	(x-1) cm	
						x cm
						A GIII
				v		
					2 <i>x</i> cm	
					23 0111	
					= 1 1	
]	
				Diagram	n not drawn to scale	
	value of	Ι Λ.				
9						
,						
3						
3						

04
''
_
_

	nre 2017	E
By considering a sphere of ra	ng algebraic expressions, show that it will never be possible for the su adius r to be equal to the surface area of a cube with sides of length r	rface area of r. [2]
	END OF PAPER	

