

GCSE Maths Intermediate Booklet 1

Name:	
Set:	

Transformations UI June 20174

3. Reflect the triangle below in the *x*-axis. (a)

Examiner

[1]

(b) Enlarge the triangle below by a scale factor of 3. [2]

[1]

athe June 2018 (1)

9. Reflect the shape S in the line y = 1. Examiner only

FII mostles June 11 2018 W

Examiner only Describe fully the single transformation that transforms shape S to shape T. (b) [3] 6-5 S T 3. 2--7 -6 -5 -ż 2 3 0 6 -2--3 -5--6-

F+1 112 NOV 2016

(b) Describe fully a single transformation that transforms triangle S onto triangle T.

F+1 42 Nov 2016 12

(c) (i) Translate the triangle S using the column vector $\begin{pmatrix} -5 \\ -4 \end{pmatrix}$

Examiner only

-

H

4

[1]

(ii) Write down the column vector that will reverse the translation in part (i). [1]

Construction

				300
2.				
		D •		
			• C	
		Α		
			В	
	(a)	Draw a line parallel to AB, through the point C.		[1]
	(b)	Draw a line perpendicular to AB, through the point D.		[1]
3.	(a)	Write down the next term in the sequence below.		[1]
		1 5 9 13		-
	<i>(</i> -1)			
	(b)	Describe in words the rule for continuing the sequence.		[1

FUI June 2019

Examiner only

4

 \dashv

[3]

Diagram not drawn to scale

15.	Construct an accurate drawing of triangle ABC , where $AB = 7$ cm, $\widehat{ABC} = 90^{\circ}$ and $\widehat{BAC} = 6$ Use only a ruler and a pair of compasses. The side AB has been drawn for you. You must show your construction arcs.	0°.
	The side AB has been drawn for you. You must show your construction arcs.	[3
	A B	

© WJEC CBAC Ltd.

(3300U40-1)

I UI NOV 2016 11

A reg	ular polygon has exterior angles of 45°.	
(a)	How many sides does this polygon have?	[2]
(b)	Each side of this regular polygon is 7 cm. A sketch of two sides of the polygon is shown below. The two sides are AB and BC.	
	C	
	7 cm 45°	
	A B	
	Diagram not drawn to scale	
	Construct an accurate drawing that shows these two sides of the polygon. Use only a ruler and a pair of compasses.	
	The point A has been given. You must show your construction arcs.	[4]
1		

© WJEC CBAC Ltd.

2. (a) Mai has a box of 60 different beads.

There are 40 red beads in the box.

Mai chooses a bead at random from the box.

Describe the chance that Mai chooses a red bead. Circle the correct expression from those given below.

[1]

- impossible unlikely an even chance likely certain
- (b) Ifan has a box of 12 cakes.
 There are 6 chocolate cakes and the rest are lemon cakes.
 Ifan chooses a cake at random from the box.

Describe the chance that Ifan chooses a lemon cake. Circle the correct expression from those given below.

[1]

impossible unlikely an even chance likely certain

3. Draw all the lines of symmetry on the following shapes.

[2]

(a)	Huw has 19 coins in his pocket. 13 of these coins are 10p coins and Huw chooses one coin at random f		ns.	
	Circle the best expression from the chooses a 5p coin.		o describe th	ne chance that Huw [1]
	impossible unlikely a	n even chance	likely	certain
(b)	Catrin has 10 pieces of fruit in her l She has 4 oranges and 6 apples.	bag.		
	Catrin chooses one piece of fruit at	t random from her b	ag.	
	Circle the best expression from the chooses a banana from her bag.	nose given below to	describe the	e chance that Catrin [1]
	impossible unlikely a	n even chance	likely	certain
(a)	Kate thought of a number. She multiplied her number by 9 and What number did Kate think of?	d got the answer 54		[1]
(b)	Write a positive whole number in	each empty box to	make this sta	atement true. [1]

n this question, you will be assessed on the quality of your or ccuracy in writing.	ganisation, communication and
class has 32 pupils.	
8 are boys.	
he others are girls.	
2 pupils from this class went on a trip.	
ne of these 12 pupils is chosen at random. here is an even chance that the chosen pupil is a girl.	
ow many girls stayed in class?	[3 + 2 OCW]
	- 7,1
	•••••
The state of the st	
The number of girls who stayed in class is	

6 Examiner only 6. Arjuna has the 10 cards shown below. 19 11 15 16 18 He puts the cards in a box and then chooses one at random. \dashv On the probability scale shown below, mark the points A and B where: +A is the probability of Arjuna choosing a number that is greater than 16, B is the probability of Arjuna choosing a number that is less than 20. [2] 0 \dashv \dashv \dashv \dashv

© WJEC CBAC Ltd.

(3300U10-1)

7. (a) Gareth is running a game stall at his school fete. In his game, a player must flip a coin and spin a fair 4-sided spinner. The sections of the spinner are labelled 1, 2, 3 and 4, as shown below.

(1)	One has been done for you.	[2]
	Head, 1	
(ii)	A player wins a prize if the coin lands on tails and the spinner shows the n Azi plays the game once.	umber 4.
	What is the probability that Azi wins a prize?	[2]
Con	ve cove:	
	ys says:	حملت مدماه
char	e chance of throwing a three on an ordinary 6-sided dice is higher t nce of throwing a six, because six is the hardest number to get."	rnan the
	erys correct?	
Expi	lain your reasoning fully.	[1]

11. Seren has a fair 8-sided spinner.

The sections of the spinner are numbered 1, 2, 2, 3, 3, 3, 4, 4.

(a) Which number is the spinner most likely to land on?

[1]

(b) Circle one term from the list below that describes the probability of the spinner landing on a 2.

impossible

unlikely

even chance

likely

certain

 On the probability scale below, mark with an arrow the probability of the spinner landing on a 3.

Examiner only

3. A travel company offers the following holiday options.

Time	Accommodation	Transport
Summer or Winter	Cottage or Hotel	Train or Bus or Car

(a) List all the possible different combinations of holiday options that the company offers.

One has been done for you. [3]

Time

Accommodation

Transport

Summer

Cottage

Train

(b) A holiday is chosen at random from all the different combinations on offer.P is the probability that the chosen holiday is a

Summer holiday, staying in a Cottage and travelling by Train.

Mark the point ${\bf P}$ on the probability scale shown below.

[1]

a)	A fair, six-sided what is the prob Circle your answ	ability that a 4 i	s shown on the	dice?		[1]
	6%	<u>1</u> 5	1 4	6:1	<u>1</u>	
o)	50 raffle tickets sian has a 20% How many ticket Circle your answ	chance of winn s did Sian buy?	ing the top prize).		[1]
	1	2	4	10	20	
······	A bag contains a			beads and pink be	eads.	
	The probability t	hat the bead is	pink is $\frac{1}{5}$.			
	Which of the foll Circle your answ	owing sets of be	eads could have	been in the bag?		[1]
	6 blue 6 yellow 3 pink	5 blue 5 yellow 5 pink	1 blue 1 yellow 5 pink	5 blue 5 yellow 1 pink	6 blue 3 yellow 6 pink	
1						

5. Three red cards have the following numbers written on them.

3

6

6

9

Four green cards have the following numbers written on them.

1

2

3

4

In a game, the cards are turned face down.
A player chooses one red card and one green card at random.
The player's score is the sum of the two numbers.

(a) Complete the following table.

[1]

Red card

		So	core	
9		11		
6		8		
3	4	5	6	7
	1	2	3	4

Green card

(b) A player wins a prize if the score is more than 9.Safira plays the game once. What is the probability that she wins a prize?

[2]

(c) 60 people play the game once.

Approximately how many people would you expect to win a prize?

[2]

6. Sara is in charge of a game at her school's Christmas party.

Two fair spinners are spun as shown in the example below.

1st Spinner

2nd Spinner

People can make a two-digit number using the numbers shown on the spinners using the following rule:

Multiply the number on the first spinner by 10 and then add the number on the second spinner.

One example, as shown above, makes the number 21, because $2 \times 10 + 1 = 21$.

(a)	a) How many different numbers can be made playing this game?					

(b)	Write down all the prime numbers that can be made playing this game.	[2]

(c) What is the probability that a person makes a prime number when playing the game once? [2]

(d)	Sara charges each person £1 to play the game once.	E
	Sara charges each person £1 to play the game once. Each player who makes a prime number from their spins wins £2. How much profit would the school expect to make when 180 people play the game?	[4]
•••••		
		ii i

T	-	-	8
++1	_ 111	June	2017

Examiner only

- 6. David, Jane and Mary are beach inspectors. Three beaches, Harlech, Rhyl and Porthcawl, are all to be inspected on a certain day. It is decided to share the work so that the inspectors will visit one beach each, chosen at random.
 - (a) List all the possible different ways they could share the work. One has been done for you.

[2]

David \longrightarrow Harlech, Jane \longrightarrow Rhyl and Mary \longrightarrow Porthcawl

(b)	What is the probability that one of the female inspectors will visit Rhyl?	[2]

© WJEC CBAC Ltd.

S

T

R | I

D

G

N

_ | [

A

S

In an experiment, the cards are turned face down and rearranged. A card is selected at random and the letter on the card is recorded.

The experiment is carried out 325 times.

How many times would you expect the letter ${f Y}$ to be recorded?

[3]

3300U401

7. A dice is thrown 50 times.

The number shown on the dice is recorded after each throw.

The table below shows the results recorded.

Number shown on dice	1	2	3	4	5	6
Frequency	9	7	8	7	6	13

(a) The relative frequency of throwing a 1 was calculated as $\frac{9}{50}$ = 0.18.

What was the relative frequency of throwing a 6? Give your answer as a decimal.

[1]

(b) The number 4 was thrown 7 times in the first 50 throws.

Using **this fact**, calculate how many times you would expect a 4 to be thrown when this dice is thrown 3000 times.

(c) How many times would you expect a 4 to be thrown when a fair dice is thrown 3000 times?

3300U401

	4.2	-	12	
++7	maths	Dine	2018	15

Examiner only

10.	A box contains many discs, identical in shape and size.
	A picture of one of four Welsh castles is printed on each disc.

(a) A disc is chosen at random from the box.
 Complete the table below to find the probability of choosing a disc showing Dinefwr Castle.

	Picture	Caernarfon Castle	Harlech Castle	Rhuddlan Castle	Dinefwr Castle	
F	Probability	0.36	0.12	0.24		
					100	1
					,	

<i>(</i> 1.)	1 . W . T					and the same
(b)	In the box, to How many o	here were 522 disc of the discs showe	cs showing a pict d a picture of Ha	ture of Caernarfon rlech Castle?	Castle.	[2]

Examiner only

10. Ceri has a set of cards.

Each of her cards is labelled North, East, South or West.

(a) Ceri chooses one card at random from her set of cards.
 Complete the table below to find the probability of Ceri choosing a card labelled West.

[2

Label	North	East	South	West
Probability	0.4	0.25	0.2	
	hooses one card at ran			
	hooses one card at ran			
What		e card is labelled E	East or South?	ards.

A fair	six-sided dice	e and a fair coin	are thrown togeth	er once.		
			of the following st			
(a)	The number	of possible outc	omes is			[1]
	2	6	8	12	24.	
(b)	The probabil	lity of getting a 4	on the dice and a	a tail on the coin is	S	[1]
	1 8	<u>1</u>	1/2	<u>1</u> 6	<u>1</u>	
(c)	The probabil	lity of getting a n	nultiple of 3 on th	ne dice and a hea c	d on the coin is	[1]
	1 8	<u>1</u> 12	1/2	1 6	<u>1</u>	
Spac	e for working:					

**********						***********

16.	Alwyn often drives from	Bangor to Cardiff.
-	He always shooses one	of two routes for the

He always chooses one of two routes for these journeys. He either travels through Rhayader or through Hereford.

The probability that he travels through Rhayader is 0.7.

Sometimes he decides to stop for a break during his journey. His decision is independent of the route he takes.

The probability that he travels through Rhayader and stops for a break is 0.42.

(a) Complete the following tree diagram.

[4]

Route Stops for

(b)	Calculate the	e probability	that	Alwyn	travels	through	Hereford	but	does	not	stop	for a	ê
	break.											[2	

16. A factory uses a machine to produce electrical sockets.

The manager carries out a survey to investigate the probability of the machine producing a defective socket.

The relative frequency of defective sockets produced was calculated after testing a total of 1000, 2000, 3000, 4000 and 5000 sockets.

The results are plotted on the graph below.

Relative frequency of defective sockets

- (a) How many of the first 3000 sockets tested were defective? [2]
- (b) Write down the best estimate for the probability that one socket, selected at random, will be defective.

(3300U40-1)

You must give a reason for your choice.

[2]

Probability:

© WJEC CBAC Ltd.

Reason:

Turn over.

17. 100 boxes each contain 10 balls.

45 of the boxes are labelled A.

They each contain 7 black balls and 3 white balls.

25 of the boxes are labelled B.

They each contain 4 black balls and 6 white balls.

The rest of the boxes are labelled C.

They each contain 8 black balls and 2 white balls.

In a game, a player chooses a box at random, and then chooses a ball at random from that box.

[1]

[3]

(b)	What is the probability that a player will select a black ball?						

17 June 201

г.	kamine
	kamme
	only

If a large number of people played the game, approximately what fraction of them would (c) you expect to choose a white ball? Circle your answer. [1]

<u>1</u>

<u>1</u>2

Factorise $x^3 - 5x$. 18. (a)

[1]

Expand and simplify (2x-3)(x+4). (b)

[2]

Factorise $x^2 - 3x - 28$.

[2]

8

Examiner only

6. (a) The points A and B are plotted on the grid below. Write down the coordinates of A and B.

[2]

A (...... ,)

B (......)

(b) The point C is the midpoint of the line AB. Find the coordinates of C.

[2]

C (......)

9. (a) The point A is plotted on the grid below.

Write down the coordinates of A.

[1]

(b) Plot the points B(5, -2) and C(-3, -2) on the grid.

[2]

(c) ABCD is a rectangle.

Write down the coordinates of *D*.

[1]

3300U101

(a) What are the coordinates of point A?

[1]

(b) What are the coordinates of point B?

[1]

(c) Rhys thinks that the line would go through the point (6, 9).

Is Rhys correct?

YES

NO

Explain your reasoning.

© WJEC CBAC Ltd.

[1]

07

F+I maths Jue 2018 11

3. The table below shows some values of y = x - 3 for values of x from -4 to 6.

x	-4	-2	0	2	4	6
y = x - 3	- 7		-3			3

(a) Complete the table above.

[2]

[2]

Examiner only

(b) On the graph paper below, draw the graph of the straight line y = x - 3 for values of x from -4 to 6 only.

+	I maths June 2018 11	E
(c)	The straight line you have drawn on the graph for values of x from -4 to 6 is a diagonal of a square.	
	Write down the coordinates of the four corners of this square.	[2]
	()	
A ba	g contains a number of different coloured balls. Il is selected at random from the bag. probability of selecting a blue ball is 0.3 .	
(a)	Why is the following statement incorrect? Explain your answer clearly.	[1]
······	'More than half the balls in the bag are blue.'	
(b)	What is the probability that a ball selected at random from the bag is not blue?	[1]
(c)	There are 50 balls in the bag. How many of them are blue?	[2]
		l l

13. (a)

Which one of the following equations could represent the line shown in the graph above? Circle your answer. [1]

$$y = -x - 2$$

$$y = -x + 2$$

$$y = x + 2 \qquad \qquad y = x - 2$$

$$y = x - 2$$

$$y = -x$$
.

Which **one** of the following points lies on the line 2y = 3x + 4? (b) Circle your answer.

[1]

$$(2, -5)$$

$$(-2, 5)$$

$$(-2, -5)$$

(c)

What is the gradient of the line shown in the graph above? Circle your answer.

[1]

$$\frac{3}{2}$$

$$-\frac{3}{2}$$

$$\frac{2}{3}$$

$$-\frac{2}{3}$$

15. (a) The diagram below shows the graph of a straight line for values of x from -3 to 3.

(i) Write down the gradient of the above line.

[1]

- (ii) Write down the equation of the line in the form y = mx + c, where m and c are whole numbers. [2]
- (b) Without drawing, show that the line 2y = 5x 3 is parallel to the line 4y = 10x + 7. You must show working to support your answer. [2]

I 11 June 2017 14

11.	The table below shows some of the values of	$y = x^2 - 5x + 2$, for values of x from -1 to 5.
-----	---	--

Examiner only

x	-1	0	1	2	3	4	5
$y = x^2 - 5x + 2$	8	2	-2	-4		-2	2

(a) Complete the table above. [1]

(b) On the graph paper below, draw the graph of $y = x^2 - 5x + 2$ for values of x from -1 to 5.

T	UI	TIME	2017	15
1		JUINE	0-0 1	

Examine
Examine only

[2]

		100	200	6.2	- 120	
(C)	Draw the	line v =	-3 on	the	graph	naner
(0)	Diam the	11110	2 011	LIIC	grapii	pupui.

Write down the values of x where the line y = -3 cuts the curve $y = x^2 - 5x + 2$. Give your answers correct to 1 decimal place.

Values of x are and

12.	(a)	[3	

 ······································	 	***************************************

(b) The number $33\,554\,432$ is equal to 2^{25} .

Explain how this tells you that 33 554 432 is not a square number.					

Examiner only

 \dashv

 \dashv

[2]

[2]

11. (a) The table below shows some of the values of $y = 2x^2 - 5x - 1$ for values of x from -2 to 4.

Complete the table by finding the value of y for x = -1 and for x = 2.

X	-2	-1	0	1	2	3	4
$y = 2x^2 - 5x - 1$	17		-1	-4		2	11

(b) Draw the graph of $y = 2x^2 - 5x - 1$ for values of x from -2 to 4. Use the graph paper below.

(c) Draw the line y = 5 on the graph paper.

> Write down the values of x where the line y = 5 cuts the curve $y = 2x^2 - 5x - 1$. Give your answers correct to 1 decimal place.

[2]

Values of x are and

Circle the equation below whose solutions are the values you have given in (c).

[1]

$$2x^2 - 5x - 1 = 0$$

$$2x^2 - 5x - 6 = 0$$
 $2x^2 - 5x - 5 = 0$

$$2x^2 - 5x - 5 = 0$$

$$2x^2 - x - 1 = 0$$

$$2x^2 - x - 1 = 0 \qquad 2x^2 - 5x + 4 = 0$$

Algebra and Solving Equations

F	W2	MON	2016	6			TE	
(a)	Circle the correct answer for the following statement.							
	5a + 4a -	- a can be	simplified as					
		9	5a + 4	8 <i>a</i>	8	9 <i>a</i>		
(b)	A linear s Two of the	equence of e numbers	numbers is sho are missing.	wn below.				
		19,	,		7,	3		
	Fill in the Write dov	missing nu vn the rule	mbers in the sector finding the ne	quence. ext term in the se	equence.		[2]	
Rule:								
							<	

I maths Jue 2018 11

Examir	ie
only	

ii colve tricoc equations.	7	.	Solve	these	equations.	
----------------------------	---	----------	-------	-------	------------	--

1-1	1.		11
(a)	6x	=	42

[1]

(b)
$$x + 9 = 28$$

[1]

(c)
$$14 - x = 8$$

[1]

*******************	 	 ************************	

- 8. Write 4.47367 correct to:
 - (a) 1 decimal place

[1]

the nearest whole number

[1]

- Circle the correct answer for each of the following statements.
 - (a) x + x + x + x + 2x can be simplified to

[1]

[1]

6x

 x^6

 $2x^6$

 6^x

5x

(b) When t = 185, the value of 21t is

185t

21 185

18 521

206

3885

(a)	Write dow	n the next tv	vo number	s in the foll	owing sequ	ience.	[2]
	35,	25,	16,	8,		,	
(b)	Find the v	alue of 2x +	7y when λ	c = -3 and	y = 10.		[2]
(c)	Simplify th	ne expressio	n 8 <i>k</i> + 3 <i>m</i>	1 – 2k – 8n	1.		[2]
		15% and $\frac{7}{20}$ all your work		ng order.			[3]
	must show a		ing.	ng order.		Greatest	[3]

© WJEC CBAC Ltd.

F+ I maths 100 × 2017 11

2. Circle either TRUE or FALSE for each of the following statements.

	Examine
[3]	only
[a]	

The expression $g \times g \times g$ can be written as $3g$	TRUE	FALSE
The expression $7y - y$ can be written as 7	TRUE	FALSE
$\frac{a}{4} \div a = \frac{1}{4}$	TRUE	FALSE
$\frac{a}{2} + \frac{a}{2} = a$	TRUE	FALSE
When $a = 1$, $b = 2$ and $c = 3$, $a + b + c = abc$	TRUE	FALSE

Space for working:

fr.		Maths	The	42018	42
-----	--	-------	-----	-------	----

	- W W		1.000	Orre	-010		Examiner
1.	(a)	Solve	$\frac{x}{4} = 7.$			[1]	only

(b)	Simplify $3f + 7g + f - 4g$.	[2]

(c) Use the formula
$$5p + 2q = t$$
 to find the value of q when $p = 4$ and $t = 24.6$. [3]

4. (a) Solve the equation 3x - 2 = 10.

......

[2]

(b) A number machine is shown below.

(i) Calculate the OUTPUT when the INPUT is −2.

[1]

(ii) Write down an expression for the OUTPUT when the INPUT is n.

[2]

The table below shows the first five terms of a sequence of numbers.

Term	t_1	t_2	t_3	t_4	t_5
Value	2	5	8	11	14

Circle the correct equation that connects terms t_6 and t_7 .

 $t_6 = t_7 + 3$ $t_7 = t_6 + 14$ $t_7 - t_6 = 1$ $t_7 = t_6 - 3$ $t_7 = t_6 + 3$.

$$t_6 = t_7 + 3$$

$$t_7 = t_6 + 14$$

$$t_7 - t_6 = 1$$

$$t_7 = t_6 - 3$$

$$t_7 = t_6 + 3$$
.

The *n*th term of another sequence is given by 2n - 11. (b)

Write down the value of,

the 10th term,

[1]

1::1	11	0-1	1
(ii)	THE	-310	term
(117	uic	UIU	COLLI

[1]

[1]

Examiner

(a)						un term is give	n by 2 <i>n</i> – 5. [2]
		three term		,		and	
(b)	Write do				f the following	g sequence.	[2]
		7,	11,	15,	19,	****	
					.,		

© WJEC CBAC Ltd.

(3300U40-1)

7. (a) Solve these equations.

> 7x = 56(i)

[1]

(ii) y + 19 = 83

[1]

Simplify the expression 12k - 15k + 7k.

[1]

Write down the value of 9². 8.

[1]

Work out 1.2×70 .

[1]

7. Solve each of the following equations.

(a)
$$\frac{w}{5} = 10$$

[1]

(b)
$$\frac{42}{x} = 7$$

[1]

[3]

(c) 13y - 5 = 9y + 27

[0]

The term in each square in the top two rows is found by using the following rule:

The term in any square is the sum of the terms in the two squares below it.

Some terms are already shown.

Use the rule to write down the missing terms in the three empty squares.

[3]

Space for working	ıg:			

© WJEC CBAC Ltd.

9. Look at the diagram below.

The expression in each circle is found by adding the expressions in the rectangles on either side of the circle.

Complete the diagram by writing expressions in the blank circles and the blank rectangle. You must simplify your expressions.

[3]

311111111111111111111111111111111111111			

	************	***************************************	

Working space:

(a)	Write down	n the n th term	of the f	ollowing	sequenc	e.		[2]
		3,	4,	5,	6,			
(b)		rm of a differe						[2]
		erm = ch term in thi			=e first tha		3 rd term = value greater th	
		А	nswer =	·		term.		

5.	(a)	Write down the next two numbers in the following sequence.	[2

22 21 18 13

(b) Expand 5(3x-2). [1]

(c) Solve 9x + 3 = 4x + 5. [3]

3300U301

12. Circle the correct answer for each of the following.

(a)
$$x^3 \times x^6 =$$

[1]

$$\chi^{36}$$

$$x^{0.5}$$

$$x^2$$

13

$$x^9$$

 x^{18}

(b)
$$(7x-5y)-(3x+2y)=$$

[1]

$$4x - 3y$$

$$4x - 71$$

$$4x + 31$$

$$4x - 7y \qquad 4x + 3y \qquad -4x + 7y$$

$$-4x - 7y$$

A car travels x miles in 30 minutes. Its average speed in miles per hour is

[1]

$$\frac{x}{2}$$

$$\frac{x}{30}$$

$$\frac{2}{x}$$

30x

A solution to the equation							
$x^3 - 2x - 45 = 0$							
lies between 3 and 4.							
Use the method of trial and improvement to find this solution correct to 1 decimal place. You must show all your working.							

13. A solution to the agreetical

Examine
only

13.	A solution to the equation	
	$2x^3 - 3x - 17 = 0$	
	lies between 2 and 3.	
	Use the method of trial and improvement to find this solution correct to 1 decimal place. You must show all your working.	[4]

I UI June 2017 20

7.	Solve the following simultaneous equations using an algebraic (not graphical) method.	[4]
	3x + 4y = 7 $2x - 3y = 16$	

I 42 Nov 20196

	Factorise $x^2 - 2x - 24$, and hence solve $x^2 - 2x - 24 = 0$.	[3]
	4x + 3 + 7x + 1 + 20	
b)	Solve the equation $\frac{4x-3}{2} + \frac{7x+1}{6} = \frac{29}{2}$.	[4]

	Oct 100 V sole	Exami
17.	William has n marbles. Lois had 4 times as many marbles as William, but she has now lost 23 of them.	onl
	Lois still has more marbles than William.	
	Write down an inequality in terms of n to show the above information. Use your inequality to find the least number of marbles that William may have. [4]	-]
	END OF PAPER	

© WJEC CBAC Ltd.

(3300U30-1)

Examiner **18.** Calculate the value of $(5.41 \times 10^5) + (2.3 \times 10^4)$. [2] Give your answer in standard form. **19.** Rashid owned n sheep. Eifion had exactly 4 times as many sheep as Rashid. Rashid buys 17 extra sheep. Eifion sells 8 of his sheep. Eifion still has more sheep than Rashid. Form an inequality, in terms of n. Solve the inequality to find the **least** value of n. [5] You must show all your working. **END OF PAPER**

only

