GCSE MARKING SCHEME

AUTUMN 2022

GCSE
MATHEMATICS - NUMERACY UNIT 2 - INTERMEDIATE TIER 3310U40-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY

AUTUMN 2022 MARK SCHEME

Unit 2: Intermediate Tier	Mark	Comments
1(a) Use of 1 million as 1000000	B1	May be seen at any stage of working or implied by a correct answer Accept from sight of 2.2 million written as 2200000 Allow as implied from one of the following: - sight of an appropriate stage of working, e.g. 1% as 22000 or 10% as 220000 or 50% as 1100000 - an answer of 40000 provided not from 0.2×2 million
$0.02 \times 2.2(\times 1000000)$ or $(1000000 \times 2.2 \div 50$ or equivalent (£) 44000 or (£) 44,000	M1	The method must be for the intention of finding 2% of 2.2 million, not any other percentage May be implied, from a full method, from sight of - $0.02 \times$ 'digits 22 with place value error' - when working not shown, only non-zero digits of 44 in their answers Award MO for 1.02×2.2 or 0.98×2.2 or 0.2×2.2 CAO. Answer space takes precedence Do not accept (£)0.044 (million) or 44.000 (A0) unless 44000 seen in working (A1)
1(b)(i) $\quad \frac{115}{360}$	B1	
1(b)(ii) Gold $20^{\circ} \pm 2^{\circ}$ $1800 \times \frac{20(\pm 2)}{360}$ or $5 \times(20(\pm 2))$ or equivalent 100 (gold medals)	B1 M1 A1	Check the diagram Also implies previous B1 FT for any value used for ' 20^{\prime} ' provided $\neq 180^{\circ}$ and < 360°) for M1 only (including use of 160°) A correct answer from using $20^{\circ} \pm 2^{\circ}$ in the inclusive range 90 to 110 (gold medals), not from premature approximation $(20 / 360=0.05, \text { then } 0.05 \times 1800=90 \quad \text { B1 M1 A0 })$

\begin{tabular}{|c|c|c|}
\hline 3(a) Reasonable explanation, e.g. 'no one spent longer than 80 minutes training' ' 1 hour 25 minutes is more than 80 minutes' \& E1 \& \begin{tabular}{l}
Allow, e.g. \\
'graph only goes up to 80 (minutes)' \\
'only shows to 1 hour 20 minutes' \\
'doesn't show above 80 minutes' \\
'the graph doesn't extend that much' \\
'the bar doesn't go up to 1 hour 25 minutes' \\
'the bar doesn't go up to 85 minutes' \\
'no one spent 1 hour 25 minutes in the gym' \\
'the maximum he could have spent was 1 hour 20 \\
minutes' \\
'85 minutes was not recorded' \\
'goes no later than 1 hour 20 minutes' \\
Do not accept, e.g. \\
'the graph only gives 20 minute time groups (slots)' 'because in a frequency graph there is no way to know who is Freddie' \\
'he spent 1 hour 20 minutes in the gym' 'he spent an hour in the gym' \\
'the graph shows he didn't spend 1 hour 25 minutes in the gym' \\
' 1 hour 25 minutes is 85 minutes'
\end{tabular} \\
\hline 3 (b) 14 \& B1 \& \\
\hline 3(c) 38 \& B1 \& \\
\hline \begin{tabular}{l}
3(d) \\
(Total number of men) \(14+22+48+16\) \\
OR (Total number of women) \(12+26+54+22\) \\
(Total men) 100 AND (Total women) 114 \\
Method considering proportions, e.g. sight of any of: \\
- \(\frac{48}{100}\) AND \(\frac{54}{114}\) \\
- \(48 \%\) of 114 \\
- \(\frac{54}{114}\) of 100 \\
'False' unambiguously selected or implied and accurate appropriate calculations to justify choice of 'False', e.g. \\
- \(48 \%\) and \(47(.3 . .) \\).\(% or 47.4 \%\) \\
- 0.48 and \(0.47(3 \ldots)\) \\
- \((48 \%\) of \(114=) 54.7(2)\) and 54 (women)
\end{tabular} \& M1
A2
M1

A1 \& | Check the graphs for working |
| :--- |
| FT 'their $12+26$ ' from (c), i.e. 'their 38 ' $+54+22$ |
| A1 for either total correct |
| FT 'their $48,100,54$, and 114 ' providing at least two of them are correct and 'their total for men 100 ' \neq 'their total for women 114' |
| Allow 'True' if justified by correct calculations from their 4 values. |

\hline
\end{tabular}

5(a)		Ignore $£$ for $€$ throughout
$\begin{array}{ll} \text { (Tax at } 22 \%) & 0.22 \times 15000 \text { or } \\ & 0.22 \times(25000-10000) \text { or equivalent } \end{array}$	M2	M1 for appropriate sight of 25000-10000 (=€15000)
$\begin{array}{ll} \text { (Tax at } 35 \%) & 0.35 \times 3000 \text { or } \\ & 0.35 \times(28000-25000) \text { or equivalent } \end{array}$	M2	M1 for 28000-25000 (=€ $¢ 000$)
(Total tax due $3300+1050=$) 4350 (euros)	A2	CAO A1 for sight of 3300 (euros) or 1050 (euros)
(Tax still owed $4350-3600=$) 750 (euros)	B1	FT for positive answers only, 'their derived 4350' - 3600, provided $3300+\ldots .$. or $\ldots+1050$ seen, i.e. sum of two amounts with at least one amount correct If no marks, for special cases award one of the following:
		$(0.22 \times(28000-3600-10000)=)$ $(0.22 \times(24400-10000)=)$ $(0.22 \times 14400=)$ SC2 (€) 3168
		$\begin{array}{l\|l} \hline 0.22 \times(28000-3600-10000) \text { or } & \\ 0.22 \times(24400-10000) \text { or } & \text { SC } 1 \\ 0.22 \times 14400 & \end{array}$
5(b) $3600 \div 1.11$ (£) 3243.24	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Answer space takes precedence Sight of (£) 3243 or 3243.2(4324....) implies M1
$\begin{aligned} & \text { 6(a) } \quad\left(\text { Direct }^{2}=\right) 200^{2}+350^{2} \\ & \text { Direct }^{2}=162500 \text { or } \quad(\text { Direct }=) \sqrt{ } 162500 \\ & (\text { Direct }=) 403(.11 \ldots \mathrm{~m}) \text { or } 50 \sqrt{ } 65(\mathrm{~m}) \text { or } \sqrt{ } 162500(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	
	A1	FT from M1 for the correctly evaluated square root of 'their 162500' provided 'their answer' > 350 (m) May be implied in further working Mark final answer or the answer they go on to use, but then FT
(Extra distance $=$) $200+350-403(.1$...) or $200+350-50 \sqrt{ } 65$ or $200+350-\sqrt{ } 162500$	M1	FT 'their derived 403(.11...)' > 350 and from an attempt to use Pythagoras' Theorem
$146.8(87 \ldots . \mathrm{m})$ or $146.9(\mathrm{~m})$ or $147(\mathrm{~m})$	A1	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\(7(a) 4500 \times(1-0.2(0)) \times(1-0.14)^{9}\) or \(4500 \times 0.8(0) \times 0.86^{9}\) or equivalent \\
An answer in the range (\(£\)) 926.35 to (\(£) 926.40\)
\end{tabular} \& M2 \& \begin{tabular}{l}
For M2, do not ignore any additional years considered, unless 10 years selected or implied in later working \\
M1 for equivalent of one of the following (which may be embedded in other working): \\
- \(4500 \times(1-0.2(0))\)
\[
(=3600)
\]
\[
\text { - } 4500 \times 0.8(0) \quad(=3600)
\]
\[
-4500 \times(1-0.14)^{9} \quad(=1157.97 \ldots)
\]
\[
\text { - } 4500 \times 0.86^{9} \quad(=1157.97 \ldots)
\] \\
An answer for 10 years (not beyond) must be selected \\
Allow an answer of \((£) 926\) provided not from rounding an amount outside the range given \\
Award M1, SC1 for an answer \(\left(4500 \times 0.8 \times 0.86^{10}=\right)(£) 796.68(5 \ldots\).\() or (£) 796.69\) or (£)796.70 or (£)797
\end{tabular} \\
\hline \begin{tabular}{l}
7(b) \(100 \times 750 \div 125\) or \(100 \times \frac{750}{125}\) or equivalent \\
(£) 600
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& Answer space takes precedence \\
\hline \begin{tabular}{l}
\[
7 \text { 7(c) }
\] \\
Sight of appropriate \(80(\mathrm{~cm})\) (height of triangle)
\[
\begin{aligned}
\& (1 / 2 \text { width }=) \frac{80}{\tan 33^{\circ}} \\
\& \text { or } \quad(1 / 2 \text { width }=) 80 \times \tan \left(90^{\circ}-33^{\circ}\right)
\end{aligned}
\] \\
(Width of garage is) \(246(\mathrm{~cm})\) to \(246.4(\mathrm{~cm})\)
\end{tabular} \& B1
M2

m1

A1 \& | Accept equivalents using the sine rule throughout ' $1 / 2$ width' may be referred to by any unknown |
| :--- |
| Check if indicated on the diagram |
| ($=123.189 \ldots \mathrm{~cm}$ or 123.2 cm) |
| FT 'their 80 ' provided ≤ 120 and $\neq 90$ |
| M1 for sight of |
| $\tan 33^{\circ}=\frac{80}{1 / 2 \text { width }}$ or $\tan \left(90^{\circ}-33^{\circ}\right)=\frac{1 / 2 \text { width }}{80}$ |
| FT provided at least M1 previously awarded, i.e. for intention to double 'their $1 / 2$ width' |
| CAO. ISW |

\hline | 7(d) |
| :--- |
| (Maximum space $=$) 555-395-70 |
| or $550-400+2 \times 5-70$ or equivalent | \& M2

A1 \& | Check the diagram |
| :--- |
| M1 for any of the following: |
| - use of 550 < 'their 555 ' ≤ 560 |
| AND 390 < 'their 395 ' < 400 |
| - for sight of 555 and 395 |
| - for sight of $550-400+2 \times 5$ |
| CAO |
| Award M1 and SC1 for an answer of (555-395 =) 160 (cm) |

\hline
\end{tabular}

