wjec cbac

GCSE MARKING SCHEME

AUTUMN 2022

GCSE MATHEMATICS – NUMERACY UNIT 2 – HIGHER TIER 3310U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS – NUMERACY

AUTUMN 2022 MARK SCHEME

Unit 2: Higher Tier	Mark	Comments
1. (Tax at 22%) 0.22 × 15000 or 0.22 × (25000 – 10000) or equivalent	M2	Ignore £ for € throughout M1 for appropriate sight of 25000 – 10000 (= €15000
(Tax at 35%) 0.35 × 3000 or 0.35 × (28000 – 25000) or equivalent	M2	M1 for 28000 – 25000 (= €3000)
(Total tax due 3300 + 1050 =) 4350 (euros)	A2	CAO A1 for sight of 3300 (euros) or 1050 (euros)
(Tax still owed 4350 – 3600 =) 750 (euros)	B1	FT for positive answers only, 'their derived 4350' – 3600, provided 3300 + or + 1050 seen, i.e. sum of two amounts with at least one amount correct
		If no marks, for special cases award one of the following:
		(0.22 × (28000 - 3600 - 10000) =) (0.22 × (24400 - 10000) =) (0.22 × 14400 =) (€) 3168 SC2
		0.22 × (28000 – 3600 – 10000) or 0.22 × (24400 – 10000) or SC1 0.22 × 14400
Organisation and communication	OC1	For OC1, candidates will be expected to: • present their response in a structured way • explain to the reader what they are doing at each step of their response • lay out their explanations and working in a way that is clear and logical • write a conclusion that draws together their results and explains what their answer means
Writing	W1	For W1, candidates will be expected to: • show all their working • make few, if any, errors in spelling, punctuation and grammar • use correct mathematical form in their working • use appropriate terminology, units, etc.

2(a) (Direct ² =) $200^2 + 350^2$	M1	
Direct ² = 162500 or (Direct =) $\sqrt{162500}$	A1	
(Direct =) 403(.11 m) or 50√65 (m) or √162500 (m)	A1	FT from M1 for the correctly evaluated square root of 'their 162500' provided 'their answer' > 350 (m) May be implied in further working Mark final answer or the answer they go on to use, but then FT
(Extra distance =) 200 + 350 - 403(.1) or 200 + 350 - 50√65 or 200 + 350 - √162500	M1	FT 'their derived 403(.11…)' > 350 and from an attempt to use Pythagoras' Theorem
146.8(87m) or 146.9(m) or 147(m)	A1	
 2(b)(i) Selects or unambiguously implies 'No' with a reason, e.g. 'the median is in group >200m to 1000m (and he lives 200m away)', 'median is more than 200m away (but Ronnie is 	E1	Needs to compare 200(m) with median >200(m) The 200(m) can be implied from selecting 'No' Ignore additional spurious statements
200m away)'		Allow 'No' with a reason, e.g. 'Ronnie's distance is in the first group, the median is in the second group' 'Ronnie only travels 200m which is less than the median (distance)' 'because the median distance travelled is between
		200m and 1000m' 'Ronnie doesn't travel the distance of the 17.5(th) person' 'Ronnie doesn't travel the distance of the 17(th) (or 18 th) person'
		'the median 17.5(th)' 'the median 17(th) (or 18(th))' 'he only walks 200m when the (median) distance is higher' 'he only walks 200m which is less than the median' 'can't estimate exact number from the group $200 < d \le 1000'$ 'the median could be 880' '9 less than half of 35'
		'26 students walk further than him' Do not accept 'No' with a reason e.g. 'Ronnie's distance is in the first group' 'the median is 250m'
2(b)(ii) Midpoints 150, 600, 2000, 5000	B1	Check the table Sight of 7750 implies correct midpoints
150×9 + 600×10 + 2000×15 + 5000×1 (= 1350 + 6000 + 30000 + 5000 = 42350 m) ÷ 35	M1 m1	FT 'their midpoints' provided at least 3 are within or at the bounds of the appropriate groups
- 35 1210 (m)	A1	Answer space takes precedence
2(c) $(140 \div 7 =) 20$ or $140 \div 20 = 7$ or $7 \times 20 = 140$	B1	 May be implied by any of the following: consistent position patterns + 20 indicated for at least 4 consecutive positions e.g. (2,) 20, 40, 60, 80, 100, 120 sight of 22 for student 2 with no further
1 2 3 4 5 6 7 2 22 42 62 82 102 122	B1	working or entries CAO
	•	*

$3(a) 4500 \times (1 - 0.2(0)) \times (1 - 0.14)^9$ or $4500 \times 0.8(0) \times 0.86^9$ or equivalent	M2	For M2, do not ignore any additional years considered, unless 10 years selected or implied in later working M1 for equivalent of one of the following (which may be embedded in other working): • $4500 \times (1 - 0.2(0))$ (= 3600) • $4500 \times 0.8(0)$ (= 3600) • $4500 \times (1 - 0.14)^9$ (= 1157.97) • 4500×0.86^9 (= 1157.97)
An answer in the range (£)926.35 to (£)926.40	A1	An answer for 10 years (not beyond) must be selected Allow an answer of (£)926 provided not from rounding an amount outside the range given Award M1, SC1 for an answer ($4500 \times 0.8 \times 0.86^{10} =$) (£)796.68(5) or (£)796.69 or (£)796.70 or (£)797
3(b) 100 × 750 ÷ 125 or 100 × <u>750</u> or equivalent 125	M1	
(£) 600	A1	Answer space takes precedence
3(c)		Accept equivalents using the sine rule throughout '½ width' may be referred to by any unknown
Sight of appropriate 80 (cm) (height of triangle)	B1	Check if indicated on the diagram
(½ width =) <u>80</u> tan 33° or (½ width =) 80 × tan (90° – 33°)	M2	(= 123.189 cm or 123.2 cm) FT 'their 80' provided ≤ 120 and ≠ 90 M1 for sight of tan 33° = 80 or tan (90°- 33°) = $\frac{1/2}{2}$ width $\frac{1}{2}$ width 80
× 2	m1	FT provided at least M1 previously awarded, i.e. for intention to double 'their $\frac{1}{2}$ width'
(Width of garage is) 246(cm) to 246.4(cm)	A1	CAO. ISW
3(d) (Maximum space =) 555 – 395 – 70 or 550 – 400 + 2 × 5 – 70 or equivalent	M2	Check the diagram M1 for any of the following • use of $550 <$ 'their $555' \le 560$ AND $390 \le$ 'their $395' < 400$ • for sight of 555 and 395 • for sight of $550 - 400 + 2 \times 5$
90 (cm)	A1	CAO Award M1 and SC1 for an answer of (555 – 395 =) 160 (cm)

4(a) (Population in 1964) $\frac{100 + 682}{100} \times 30000 \text{ or } 7.82 \times 30000$ or $30000 + 30000 \times \frac{682}{100}$ or equivalent (Population in 2014) $\frac{100 + 20}{100} \times 234600 \text{ or } 1.2 \times 234600$	M1 M1	(= 234600 people) M0 for 6.82 × 30000 (= 204600) or 1.682 × 30000 (= 50460) FT 'their derived 234600' including 1.2 × 204600 (= 245520) 1.2 × 50460 (= 60552)
281520 (people)	A1	CAO
4(b) 287 106 ÷ 432 660 (people per km ²)	M1 A2	A1 for sight of 664.597 rounded or truncated
4(c) 1442 × 1000 ÷ 1 000 000 1.4(42 g/cm ³)	M1 A1	Mark final answer Allow M1 A1 for 1442 ÷ 1000 = 1.4(42) Do not accept from incorrect working, e.g. M0 A0 if 1.442 seen with an incorrect statement, e.g. • "1 g = 1000 kg" • "g to kg is ÷ 1000"
5. (180 -) tan ⁻¹ (64/41) or (180 -) cos ⁻¹ (41/76) or (180 -) sin ⁻¹ (64/76) or equivalent	M2	Note: angle in triangle = 57.3() or 57.4 (°) An equivalent method could include Pythagoras followed by trigonometry Allow an angle of 57(°) from correct working M1 for • tan(angle) = 64/41 or • cos(angle) = 41/76 or • sin(angle) = 64/76 or M1 for unrearranged (or better) correct substitutions into the sine or cosine rules
(x =) 122.6() (°)	A1	Allow an answer of 122.7 (°) or 123(°)
(Unusable area =) $\frac{122.6()}{360} \times \pi \times 76^{2} + \frac{41 \times 64}{2}$	M2	FT 'their derived 122.6()', but if < 90 then only M2A0 or M1A0 are available
(6176.5 to 6201) (1312)		M1 for $\frac{122.6()}{360} \times \pi \times 76^2$
= 7488.5 to 7513 (cm ²)	A1	FT for similar range provided their x > 90 and allowing $\pi = 3.14$ to 3.142

$$\begin{aligned} & \textbf{6}(\textbf{a}) \\ &$$

6(c) £ 236.84	B1	
7(a) Strategy of using Pythagoras in 2 different planes to calculate the vertical height	S1	
115 ² + 115 ² OR <u>230² + 230²</u> OR 217 ² - 115 ² 4	M1	Or their square roots Note: $115^2 + 115^2$ and $\frac{230^2 + 230^2}{4} = 26450$, and
(Vertical height =) $\sqrt{217^2 - (115^2 + 115^2)} OR \sqrt{217^2 - \frac{230^2 + 230^2}{4}}$	M2	$\sqrt{115^2 + 115^2}$ and $\frac{\sqrt{230^2 + 230^2}}{2} = 162.6(3)$ Awarding of M2 or M1 here implies previous S1M1
$(=\sqrt{20639})$	IVIZ	M1 for $217^2 - (115^2 + 115^2)$ or M1 for $217^2 - \frac{230^2 + 230^2}{4}$ or equivalent, or
		M1 for $217^2 = h^2 + (115^2 + 115^2)$ or M1 for $217^2 = h^2 + \frac{230^2 + 230^2}{4}$ or equivalent
= 143.6(627) to 143.7 (m)	A1	Allow 144 (m) provided no incorrect work seen
(Volume of pyramid =) $\frac{1}{3} \times 230 \times 230 \times 143.6(627)$	M1	FT 'their derived 143.6(627…)'
$= 2533254(.034) (m^3)$	A1	Allow answers of 2530000 to 2534000 A height of:
		 143.6 leads to 2532146(.667) (m³) 143.66 leads to 2533204(.667) (m³) 143.7 leads to 2533910 (m³)
		 144 leads to 2539200 (m³), allowing answers of 2539000 to 2540000
7(b)(i) $\frac{A}{1+tan58} = b^2$ OR $\frac{A}{1+tan58} = 12^2$ OR $\frac{A}{1+tan58} = 144$	B1	Note: 1 + tan58(°) = 2.6(00334)
$(A =) b^{2}(1 + tan58) $ OR $(A =) 12^{2}(1 + tan58)$ OR $(A =) 144(1 + tan58)$	B1	Implies previous B1
(A =) 374.4(481) (cm ²)	B1	Implies previous B1B1
7(b)(ii) (Area factor =) $\left(\frac{31.5}{15}\right)^2$ OR $\left(\frac{15}{31.5}\right)^2$ or	B1	May be implied in further working
2.1 ² OR 0.476 ²		
(= 4.41) (= 0.2267)		
(Area of large souvenir to be painted =) $400 \times \left(\frac{31.5}{15}\right)^2$ OR $400 \div \left(\frac{15}{31.5}\right)^2$	M1	
= 1764 (cm ²)	A1	

	1	I
8(a) (Distances travelled up to 11:00 =) 135 (km) AND 157.5 (km) (Distance =)	B1	Check diagram
$\sqrt{135^2 + 157.5^2 - 2 \times 135 \times 157.5 \times \cos 49(^\circ)}$	M2	FT their distances for M2 or M1 Allow use of 30 and 35 M1 for $135^2 + 157.5^2 - 2 \times 135 \times 157.5 \times \cos 49(^{\circ})$
(=√15132.33) = 123(.01) (km)	A1	Must come from M2 and provided 30 and 35 not used in the cosine rule
(Time taken for Explorer to reach Magellan =) 123(.01) ÷ 30	M1	Can only be awarded provided at least M1 previously awarded FT 'their derived 123(.01)'
= 4.1() (hours) or 4 hrs 6 mins = 15:06 or 3:06 p.m.	A1 A1	FT from M1A0 for 'their 4.1() (hours)' provided of equivalent difficulty (not quarter or half hours involved) On FT, needs to be correct to the nearest minute, rounded or truncated
		If final M0A0A0 awarded, SC2 for an answer of 14:31 or 2:31 p.m. from the division by 35 OR SC1 for 3.5(1) hours from the division by 35
8(b) (Angle at top of triangle =) $sin^{-1} \left(\frac{sin49(^{\circ})}{123(.01)} \times 157.5 \right) OR$ $cos^{-1} \left(\frac{135^{2} + 123(.01)^{2} - 157.5^{2}}{2 \times 135 \times 123(.01)} \right)$	M2	FT their values consistently used from (a) M1 for sin angle = sin49(°) or equivalent OR 157.5 123(.01) M1 for
75(.08) to 75.105 (°)	A1	$157.5^2 = 135^2 + 123(.01)^2 - 2 \times 135 \times 123(.01) \times 1$
(Bearing =) 360 – (180 – 51) – 75(.08) or 180 – (75(.08) – 51) or	M1	FT 'their derived 75(.08)'
231 – 75(.08) = 156 (°)	A1	Allow an answer of 155.9(19…)(°)
8(b) Alternative method: (Angle at right of triangle =) $sin^{-1} \left(\frac{sin49(^{\circ})}{123(.01)} \times 135 \right) OR$ $cos^{-1} \left(\frac{157.5^{2} + 123(.01)^{2} - 135^{2}}{2 \times 157.5 \times 123(.01)} \right)$	М2	FT their values consistently used from (a) M1 for sin angle = sin49(°) or equivalent OR 135 123(.01) M1 for 135 ² =157.5 ² +123(.01) ² -2×157.5×123(.01)×cos angle
= 55.9(19) to 56 (°)	A1	Must come from M2
(Bearing =) 360 - (180 - 51) - (180 - 49 - 55.9(19)) or 51 + 49 + 55.9(19) or 100 + 55.9(19)	М1	FT 'their derived 55.9(19)'
= 156 (°)	A1	Allow an answer of 155.9(19)(°)

3310U60-1 WJEC GCSE Numeracy - Unit 2 HT MS A22/CB