GCSE MARKING SCHEME

AUTUMN 2022

GCSE
MATHEMATICS - NUMERACY
UNIT 2 - HIGHER TIER 3310U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY

AUTUMN 2022 MARK SCHEME

Unit 2: Higher Tier	Mark	Comments	
1. (Tax at 22%) 0.22×15000 or $0.22 \times(25000-10000)$ or equivalent (Tax at 35%) $\quad 0.35 \times 3000$ or $0.35 \times(28000-25000)$ or equivalent (Total tax due $3300+1050=$) 4350 (euros)	M2	Ignore $£$ for $€$ throughout M1 for appropriate sight of $25000-10000$ (= €15000)	
	M2	M1 for 28000-25000 (=€ $€ 3000)$	
	A2	CAO A1 for sight of 3300 (euros) or 1050 (euros)	
(Tax still owed $4350-3600=$) 750 (euros)	B1	FT for positive answers only, 'their derived 4350' - 3600, provided $3300+\ldots .$. or $\ldots+1050$ seen, i.e. sum of two amounts with at least one amount correct If no marks, for special cases award one of the following:	
		$\begin{aligned} & (0.22 \times(28000-3600-10000)=) \\ & (0.22 \times(24400-10000)=) \\ & (0.22 \times 14400=) \\ & \end{aligned}$	SC2
		$\begin{aligned} & 0.22 \times(28000-3600-10000) \text { or } \\ & 0.22 \times(24400-10000) \text { or } \\ & 0.22 \times 14400 \end{aligned}$	SC1
Organisation and communication	OC1	For OC1, candidates will be expected to - present their response in a structured - explain to the reader what they are doi step of their response - lay out their explanations and working is clear and logical - write a conclusion that draws together and explains what their answer means	each way that results
Writing	W1	For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, pun grammar - use correct mathematical form in their - use appropriate terminology, units, etc	tion and ng

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
\[
\text { 3(a) } 4500 \times(1-0.2(0)) \times(1-0.14)^{9}
\] \\
or \(4500 \times 0.8(0) \times 0.86^{9}\) or equivalent \\
An answer in the range (£)926.35 to (£)926.40
\end{tabular} \& M2 \& \begin{tabular}{l}
For M2, do not ignore any additional years considered, unless 10 years selected or implied in later working \\
M1 for equivalent of one of the following (which may be embedded in other working): \\
- \(4500 \times(1-0.2(0))\)
\[
(=3600)
\]
\[
\text { - } 4500 \times 0.8(0) \quad(=3600)
\]
\[
\text { - } 4500 \times(1-0.14)^{9} \quad(=1157.97 \ldots)
\]
\[
\text { - } 4500 \times 0.86^{9} \quad(=1157.97 \ldots)
\] \\
An answer for 10 years (not beyond) must be selected \\
Allow an answer of \((\mathcal{£}) 926\) provided not from rounding an amount outside the range given \\
Award M1, SC1 for an answer \(\left(4500 \times 0.8 \times 0.86^{10}=\right)(£) 796.68(5 \ldots\).\() or (£) 796.69\) or \((£) 796.70\) or (£)797
\end{tabular} \\
\hline \begin{tabular}{l}
3(b) \(100 \times 750 \div 125\) or \(100 \times \frac{750}{125}\) or equivalent \\
(£) 600
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& Answer space takes precedence \\
\hline \begin{tabular}{l}
3(c) \\
Sight of appropriate \(80(\mathrm{~cm})\) (height of triangle)
\[
\begin{aligned}
\& (1 / 2 \text { width }=) \frac{80}{\tan 33^{\circ}} \\
\& \text { or } \quad(1 / 2 \text { width }=) 80 \times \tan \left(90^{\circ}-33^{\circ}\right)
\end{aligned}
\] \\
(Width of garage is) \(246(\mathrm{~cm})\) to \(246.4(\mathrm{~cm})\)
\end{tabular} \& B1
M2

m1

A1 \& | Accept equivalents using the sine rule throughout ' $1 / 2$ width' may be referred to by any unknown |
| :--- |
| Check if indicated on the diagram |
| ($=123.189 \ldots \mathrm{~cm}$ or 123.2 cm) |
| FT 'their 80 ' provided ≤ 120 and $\neq 90$ |
| M1 for sight of |
| $\tan 33^{\circ}=\frac{80}{1 / 2}$ width or $\tan \left(90^{\circ}-33^{\circ}\right)=\frac{1 / 2 \text { width }}{80}$ |
| FT provided at least M1 previously awarded, i.e. for intention to double 'their $1 / 2$ width' |
| CAO. ISW |

\hline | 3(d) |
| :--- |
| (Maximum space $=$) 555-395-70 |
| or $550-400+2 \times 5-70$ or equivalent | \& M2

A1 \& | Check the diagram |
| :--- |
| M1 for any of the following |
| - use of 550 < 'their 555 ' ≤ 560 |
| AND 390 < 'their 395' < 400 |
| - for sight of 555 and 395 |
| - for sight of $550-400+2 \times 5$ |
| CAO |
| Award M1 and SC1 for an answer of (555-395 =) 160 (cm) |

\hline
\end{tabular}

4(a) (Population in 1964)		
$\begin{aligned} & \frac{100+682}{100} \times 30000 \text { or } 7.82 \times 30000 \\ & \text { or } 30000+30000 \times \frac{682}{100} \end{aligned} \text { or equivalent }$	M1	($=234600$ people) MO for $\begin{aligned} & 6.82 \times 30000(=204600) \text { or } \\ & 1.682 \times 30000(=50460) \end{aligned}$
$\begin{aligned} & \text { (Population in 2014) } \\ & \frac{100+20}{100} \times 234600 \text { or } 1.2 \times 234600 \end{aligned}$	M1	FT 'their derived 234600 ' including $1.2 \times 204600(=245520)$ $1.2 \times 50460 \text { (= } 60552)$
281520 (people)	A1	cao
4(b) $287106 \div 432 \quad 660$ (people per km^{2})	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \end{aligned}$	A1 for sight of 664.597 rounded or truncated
4(c) $1442 \times 1000 \div 1000000 \quad 1.4\left(42 \mathrm{~g} / \mathrm{cm}^{3}\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Mark final answer Allow M1 A1 for $1442 \div 1000=1.4(42)$ Do not accept from incorrect working, e.g. M0 A0 if 1.442 seen with an incorrect statement, e.g. - " $1 \mathrm{~g}=1000 \mathrm{~kg}$ " - " g to kg is $\div 1000$ "
5. $(180-) \tan ^{-1}(64 / 41)$ or $(180-) \cos ^{-1}(41 / 76)$ $(180-) \sin ^{-1}(64 / 76)$ or equivalent\quad M2Note: angle in triangle $=57.3(\ldots)$ or $57.4\left({ }^{\circ}\right)$ An equivalent method could include Pythagoras followed by trigonometry		
$(x=) 122.6(\ldots) \quad\left({ }^{\circ}\right)$	A1	Allow an answer of $122.7\left({ }^{\circ}\right)$ or $123\left({ }^{\circ}\right)$
(Unusable area $=$) $\begin{array}{cc} \frac{122.6(\ldots)}{360} \times \pi \times 76^{2}+ & \frac{41 \times 64}{2} \\ (6176.5 \text { to } 6201) & (1312) \tag{1312} \end{array}$	M2	FT 'their derived 122.6(...)', but if < 90 then only M2A0 or M1A0 are available M1 for $\frac{122.6(\ldots)}{360} \times \pi \times 76^{2}$
$=7488.5$ to $7513\left(\mathrm{~cm}^{2}\right)$	A1	FT for similar range provided their $\mathrm{x}>90$ and allowing $\pi=3.14$ to 3.142

$\begin{aligned} & \text { 6(a) } \\ & 335\left(\frac{\left(\left(1+\frac{5.4 / 100}{12}\right)^{n}-1\right)\left(1+\frac{5.4 / 100}{12}\right)}{\frac{5.4 / 100}{12}}\right) \text { or } \\ & 335\left(\frac{\left((1+0.0045)^{n}-1\right)(1+0.0045)}{0.0045}\right) \\ & 335\left(\frac{\left(\left(1+\frac{5.4 / 100}{12}\right)^{28}-1\right)\left(1+\frac{5.4 / 100}{12}\right)}{\frac{5.4}{12 \times 100}}\right) \text { or } \\ & 335\left(\frac{\left.(1+0.0045)^{28}-1\right)(1+0.0045)}{0.0045}\right) \\ & =(£) 10017(.57 \ldots) \text { or }(£) 10018 \end{aligned}$ (Date when Rebecca has £10000)	B1	For all the amounts of money shown below, accept other reasonable approximations e.g. nearest 10p, rounded or truncated Only allow a misread of the amount deposited, not of the nominal annual rate For any value of n $\operatorname{OR} 335\left(\frac{\left(\left(1+\frac{5.4 / 100}{12}\right)^{n}-1\right)\left(1+\frac{5 \cdot 4 / 100}{12}\right)}{\frac{5.4 / 100}{12}}\right)=10000$ May be implied by amounts of (£)9259.52(1991) for n=26 AND (£) 9637.69 (734) for $\mathrm{n}=27$ Or evidence that $\mathrm{n}=28$ An answer of 28 months with no incorrect work seen can be awarded B1M1A1 and possible final A1 CAO If first B1 only awarded, SC1 for a correct evaluation of the formula for any value of n from 20 to 30 - $n=20$ leads to ($£$)7025(.78 ...) or ($£$) 7026 - $\mathrm{n}=21$ leads to $(£) 7393(.906 \ldots)$ or ($£) 7394$ - $n=22$ leads to ($£) 7763(.686$..) or ($£) 7764$ - $n=23$ leads to ($£) 8135(.13 \ldots)$ - $\mathrm{n}=24$ leads to ($£) 8508$ (.246...) - $n=25$ leads to ($£$) $8883(.04 \ldots$...) - $\mathrm{n}=26$ leads to ($£) 9259(.52 \ldots$) or ($£) 9260$ - $\mathrm{n}=27$ leads to ($£) 9637(.697 \ldots$) or ($£$) 9638 - $\mathrm{n}=29$ leads to ($£$)10399(.16...) - $\mathrm{n}=30$ leads to ($£$) 10782 (.46...) If no marks awarded and from using a rate of $5.4 / 12=0.45$, SC2 for (£) $13467(.65 \ldots$...) or (£)13468 AND Feb 2023 from $335\left(\frac{\left((1+0.45)^{7}-1\right)(1+0.45)}{0.45}\right) \text {, or }$ SC1 for ($£$) $13467(.65)$ or ($£$) 13468 If no marks awarded and from using a rate of 0.045, SC2 for ($£$)10174(.426...) AND February 2024 from $335\left(\frac{\left((1+0.045)^{19}-1\right)(1+0.045)}{0.045}\right) \text {, or }$ SC1 for (£) 10174(.426...) If no marks awarded and from using a rate of 0.054, SC2 for (£)10312(.178...) AND January 2024 from $335\left(\frac{\left((1+0.054)^{18}-1\right)(1+0.054)}{0.054}\right) \text {, or }$ SC1 for (£)10312(.178...)
6 (b) $\quad(\mathrm{AER}=)\left(1+\frac{5.4 / 100}{12}\right)^{12}-1 \quad$ or equivalent = 5.54 (\%)	M1 A1	Sight of an answer of $5.53(5675 \ldots \%)$ is awarded M1A0

\begin{tabular}{|c|c|c|}
\hline 6(c) £ 236.84 \& B1 \& \\
\hline 7(a) Strategy of using Pythagoras in 2 different planes to calculate the vertical height
\[
\begin{aligned}
\& 115^{2}+115^{2} \text { OR } \frac{230^{2}+230^{2}}{4} \text { OR } 217^{2}-115^{2} \\
\& (\text { Vertical height }=) \\
\& \begin{array}{r}
\sqrt{217^{2}-\left(115^{2}+115^{2}\right)} \text { OR } \sqrt{217^{2}-\frac{230^{2}+230^{2}}{4}} \\
(=\sqrt{20639})
\end{array} \\
\& =143.6(627 \ldots) \text { to } 143.7(\mathrm{~m}) \\
\& \begin{array}{r}
\begin{array}{r}
\text { (Volume of pyramid }=) \\
3
\end{array} \\
\qquad 230 \times 230 \times 143.6(627 \ldots) \\
=2533254(.034)\left(\mathrm{m}^{3}\right)
\end{array}
\end{aligned}
\] \& M1 \& \begin{tabular}{l}
Or their square roots \\
Note: \(115^{2}+115^{2}\) and \(\frac{230^{2}+230^{2}}{4}=26450\), and
\[
\sqrt{115^{2}+115^{2}} \text { and } \frac{\sqrt{230^{2}+230^{2}}}{2}=162.6(3 \ldots)
\] \\
Awarding of M2 or M1 here implies previous S1M1 \\
M1 for \(217^{2}-\left(115^{2}+115^{2}\right)\) or \\
M1 for \(217^{2}-\frac{230^{2}+230^{2}}{4}\) or equivalent, or \\
M1 for \(217^{2}=h^{2}+\left(115^{2}+115^{2}\right)\) or \\
M1 for \(217^{2}=h^{2}+\frac{230^{2}+230^{2}}{4}\) or equivalent \\
Allow 144 (m) provided no incorrect work seen \\
FT 'their derived 143.6(627...)' \\
Allow answers of 2530000 to 2534000 \\
A height of: \\
- 143.6 leads to \(2532146(.667)\left(m^{3}\right)\) \\
- 143.66 leads to \(2533204(.667)\left(\mathrm{m}^{3}\right)\) \\
- 143.7 leads to \(2533910\left(\mathrm{~m}^{3}\right)\) \\
- 144 leads to \(2539200\left(\mathrm{~m}^{3}\right)\), allowing answers of 2539000 to 2540000
\end{tabular} \\
\hline \[
\begin{aligned}
\& 7 \text { (b) (i) } \frac{A}{1+\tan 58}=b^{2} \quad \text { OR } \frac{A}{1+\tan 58}=12^{2} \\
\& \text { OR } \quad \frac{A}{1+\tan 58}=144 \\
\& (A=) b^{2}(1+\tan 58) \quad \text { OR } \quad(A=) 12^{2}(1+\tan 58) \\
\& \text { OR }(A=) 144(1+\tan 58) \\
\& (\mathrm{A}=) 374.4(481 \ldots)\left(\mathrm{cm}^{2}\right)
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
B1
\end{tabular} \& \begin{tabular}{l}
Note: \(1+\tan 58\left({ }^{\circ}\right)=2.6(00334 \ldots)\) \\
Implies previous B1 \\
Implies previous B1B1
\end{tabular} \\
\hline \[
\begin{aligned}
\& 7(\mathrm{~b}) \text { (ii) } \text { (Area factor }=)\left(\frac{31.5}{15}\right)^{2} \text { OR }\left(\frac{15}{31.5}\right)^{2} \text { or } \\
\& 2.1^{2} \text { OR } 0.476 \ldots{ }^{2} \\
\& (=4.41) \quad(=0.2267 \ldots)
\end{aligned} \begin{array}{r}
\text { (Area of large souvenir to be painted }=) \\
\qquad \begin{array}{r}
400 \times\left(\frac{31.5}{15}\right)^{2} \text { OR } 400 \div\left(\frac{15}{31.5}\right)^{2} \\
=1764\left(\mathrm{~cm}^{2}\right)
\end{array}
\end{array}
\] \& B1

M1
A1 \& May be implied in further working

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
(Time taken for Explorer to reach Magellan =)
\[
123(.01 \ldots) \div 30
\] \\
\(=4.1(\ldots)\) (hours) or 4 hrs 6 mins \(=15: 06\) or 3:06 p.m.
\end{tabular} \& B1
M2

A1

M1

A1

A1 \& | Check diagram |
| :--- |
| FT their distances for M2 or M1 |
| Allow use of 30 and 35 |
| M1 for $135^{2}+157.5^{2}-2 \times 135 \times 157.5 \times \cos 49\left({ }^{\circ}\right)$ |
| Must come from M2 and provided 30 and 35 not used in the cosine rule |
| Can only be awarded provided at least M1 previously awarded |
| FT 'their derived 123(.01...)' |
| FT from M1A0 for 'their 4.1(...) (hours)' provided of equivalent difficulty (not quarter or half hours involved) |
| On FT, needs to be correct to the nearest minute, rounded or truncated |
| If final MOAOAO awarded, SC2 for an answer of 14:31 or 2:31 p.m. from the division by 35 OR |
| SC1 for $3.5(1 \ldots)$ hours from the division by 35 |

\hline $$
\begin{aligned}
& \text { 8(b) (Angle at top of triangle }=\text {) } \\
& \sin ^{-1}\left(\frac{\sin 49\left({ }^{\circ}\right)}{123(.01 \ldots)} \times 157.5\right) \quad \text { OR } \\
& \cos ^{-1}\left(\frac{135^{2}+123(.01 \ldots)^{2}-157.5^{2}}{2 \times 135 \times 123(.01 \ldots)}\right) \\
& 75(.08 \ldots) \text { to } 75.105\left({ }^{(}\right) \\
& (\text {Bearing }=) 360-(180-51)-75(.08 \ldots) \text { or } \\
& 180-(75(.08 \ldots)-51) \\
& 231-75(.08 \ldots) \\
&
\end{aligned}
$$ \& M2

A1
M1

A1 \& | FT their values consistently used from (a) M1 for $\frac{\sin \text { angle }}{157.5}=\frac{\sin 49\left({ }^{\circ}\right)}{123(.01 \ldots)}$ or equivalent $O R$ |
| :--- |
| M1 for $157.5^{2}=135^{2}+123(.01)^{2}-2 \times 135 \times 123(.01) \times \cos \text { angle }$ |
| Must come from M2 |
| FT 'their derived 75(.08...)' |
| Allow an answer of $155.9(19 \ldots)\left({ }^{\circ}\right)$ |

\hline | 8(b) Alternative method: |
| :--- |
| (Angle at right of triangle $=$) $\begin{aligned} & \sin ^{-1}\left(\frac{\sin 49\left({ }^{\circ}\right)}{123(.01 \ldots)} \times 135\right) \quad O R \\ & \cos ^{-1}\left(\frac{157.5^{2}+123(.01 \ldots . .)^{2}-135^{2}}{2 \times 157.5 \times 123(.01 \ldots)}\right) \end{aligned}$ $\begin{gathered} \quad=55.9(19 \ldots) \text { to } 56\left({ }^{\circ}\right) \\ (\text { Bearing }=) \\ 360-(180-51)-(180-49-55.9(19 \ldots)) \text { or } \\ 51+49+55.9(19 \ldots) \text { or } \\ 100+55.9(19 \ldots)=156(\stackrel{\circ}{)}) \end{gathered}$ | \& M2

A1
M1

A1 \& | FT their values consistently used from (a) |
| :--- |
| M1 for $\frac{\sin \text { angle }}{135}=\frac{\sin 49\left(\frac{0}{(0)}\right.}{123(.01 \ldots)}$ or equivalent $O R$ |
| M1 for $135^{2}=157.5^{2}+123(.01)^{2}-2 \times 157.5 \times 123(.01) \times \cos \text { angle }$ |
| Must come from M2 |
| FT 'their derived 55.9(19...)' |
| Allow an answer of 155.9(19...)(${ }^{\circ}$) |

\hline
\end{tabular}

