## GCSE MARKING SCHEME

AUTUMN 2022

GCSE<br>MATHEMATICS<br>UNIT 2 - INTERMEDIATE TIER 3300U40-1

## INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

## WJEC GCSE MATHEMATICS

## AUTUMN 2022 MARK SCHEME

| Unit 2: Intermediate Tier | Mark | Comments |
| :---: | :---: | :---: |
| 1.(a) Correct enlargement | B2 | Allow correct enlargement in any orientation. B1 for three adjacent sides correctly enlarged in the same orientation. <br> SC1 for an enlargement by a factor of 2 or 4 . |
| 1.(b) Correct translation. | B1 | Do not award B1 for sight of a correct translation with other shapes on the grid. |
| 2. -36.2 | B2 | Mark final answer. <br> Award B1 for one of the following: <br> - sight of $-64 \cdot 4$ (not $-64 \cdot 4 p$ ) <br> - sight of (+)28.2 (not $28.2 q$ and not -28.2) <br> - $-36 \cdot 2$ (with additional letters). |
| 3. <br> (Angle $E B C=180-112=$ ) $68\left(^{\circ}\right.$ ) <br> (Angle $B E D$ or Angle $A E D=$ ) $360-(123+110+68)$ or equivalent $\begin{array}{r} 59\left({ }^{\circ}\right) \\ x=121\left({ }^{\circ}\right) \end{array}$ | B1 <br> M1 <br> A1 <br> B1 | Check diagram for answers. <br> Award M1 for complete method to find Angle BED or intention of complete method provided not contradicted e.g. $360-123+110+68$ with $123+110+68$ added incorrectly but attempt to subtract from 360 . FT $360-(123+110+$ 'their 68 '), provided 'their 68': <br> - $\neq 112$ <br> - and $<127$. <br> FT 180( ${ }^{\circ}$ ) - 'their derived $59\left({ }^{\circ}\right)^{\prime}$, provided $<180$ <br> Unsupported answer (may be on diagram) is awarded B1M1A1B1. |


| Organisation and Communication. <br> Accuracy of writing. | OC1 <br> W1 | For OC1, candidates will be expected to: <br> - present their response in a structured way <br> - explain to the reader what they are doing at each step of their response <br> - lay out their explanation and working in a way that is clear and logical <br> - write a conclusion that draws together their results and explains what their answer means <br> For W1, candidates will be expected to: <br> - show all their working <br> - make few, if any, errors in spelling, punctuation and grammar <br> - use correct mathematical form in their working <br> - use appropriate terminology, units, etc |
| :---: | :---: | :---: |
| 4.(a) <br> Blue $=45$ Yellow $=20$ (Angle for Red $=$ ) $\frac{25}{90} \times 360$ or equivalent <br> OR <br> (Angle for Yellow $=$ ) $\frac{20}{90} \times 360$ or equivalent <br> (Angle for Red = ) 100 $\left({ }^{\circ}\right)$ <br> (Angle for Yellow = ) 80( ${ }^{\circ}$ ) | B1 <br> B1 <br> M1 <br> A1 <br> B1 | Answer boxes take precedence. <br> Number of counters must be whole numbers. <br> FT $90-25$ - 'their stated 45 '. <br> FT 'their 20 ' 90360 or equivalent. <br> FT 360-180 - 'their stated 100 '. |
| 4.(b) <br> Pie chart drawn correctly and both sectors labelled correctly <br> Angle for Red $=100^{\circ}$ <br> Angle for Yellow $=80^{\circ}$ | B2 | For B2, FT their angles from (a), provided they add up to $180^{\circ}$. <br> Allow tolerance of $\pm 2^{\circ}$ for all angles. <br> Award B1 for one of the following: <br> - correct angles but both not correctly labelled (1 or 2 omitted or reversed) <br> - one correct angle (from FT) and correctly labelled. |
| 4.(c) $\quad \frac{70}{90} \quad$ OR $\quad \frac{7}{9} \quad$ OR $\frac{280}{360}$ or equivalent. ISW | B2 | FT 'their $45^{\prime}+25$ or 'their $100^{\circ}+180^{\circ}$, where possible. <br> Award B1 for one of the following: <br> - a numerator of 70 or 280 in a fraction < 1 <br> - a denominator of 90 or 360 in a fraction < 1 <br> - sight of adding two correct fractions for red and blue. <br> Penalise incorrect notation (e.g. '70 in 90 ') -1 . |
| 5. (a) 0.034 | B1 |  |
| 5. (b) 67000 | B1 |  |
| 5. (c) $3(4 e+5)$ | B1 |  |


| 6.30 | B2 | Answer line takes precedence. If answer line is left blank allow unambiguous indication of the answer. <br> Award B1 for one of the following as a final answer: $6,15,18,21,22,24,26,33,34,42,66,78 \ldots$ <br> (satisfies 2 conditions) |
| :---: | :---: | :---: |
| 7. $34 \cdot 3$ | B2 | Mark final answer. <br> Award B1 for one of the following: <br> - $34(\cdot 27167 . . . .$. <br> - 34.2 . |
| 8.(a) $1-(0.08+0.2+0.28)$ or equivalent $=0.44$ or equivalent. | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | For the complete method. <br> If no marks awarded, award SC1 for 55 pupils for Ysgol Bryn. |
| 8.(b) $0.28 \times 125$ or equivalent. $=35$ ISW | $\begin{aligned} & \mathrm{M} 1 \\ & \text { A1 } \end{aligned}$ | Unsupported 35/125 or equivalent implies M1A0. |
| 9.(a) <br> Position of $C 300^{\circ}$ from $B$ <br> Position of $C 7 \mathrm{~cm}$ from $B$ | B1 B1 | Allow tolerance of $\pm 2^{\circ}$. <br> Allow any unambiguous indication that the correct bearing has been drawn (e.g. dot, cross). <br> Allow tolerance of $\pm 2 \mathrm{~mm}$. |
| $\begin{aligned} & \text { 9.(b) } \\ & \qquad \begin{array}{l} \text { BC }=) 53(\mathrm{~km}) \\ \text { Bearing }=018^{\circ} \end{array} \end{aligned}$ | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | Strict FT 'their AC' $\times 5$, with tolerance of $\pm 1 \mathrm{~km}$. <br> Strict FT from their diagram. <br> Must be a three-figure bearing. <br> Allow tolerance of $\pm 2^{\circ}$ |
| 10.(a) $\quad \frac{21.76}{32}(\times 100 \%)$ or equivalent $=68 \text { (\%) }$ | M1 A1 | Allow 0.68 to imply M1. |
| $\begin{aligned} & \text { 10.(b) } \begin{array}{l} 5 t-3 t=14-3 \text { OR } 3-14=3 t-5 t \\ 2 t=11 \quad \text { OR } \quad-11=-2 t \\ t=\frac{11}{2} \quad \text { or equivalent } \end{array} . \end{aligned}$ | $\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$ | FT until $2^{\text {nd }}$ error. <br> Mark final answer. <br> Correct answer implies B1B1B1. <br> Do not allow $-t=-11 / 2$ or $t=-11 /-2$. <br> A final answer of ' $11 \div 2$ ' is B1B1B0. <br> If FT leads to a whole number answer, it must be shown as a whole number. Otherwise, accept a fraction. <br> Allow B1B1B1 for a correct embedded answer BUT only B1B1B0 if contradicted by $t \neq 11 / 2$ or equivalent. |
| 11. $\begin{aligned} & \text { (Volume of cylinder }=\text { ) } \quad \pi \times 2 \cdot 3^{2} \times 5 \\ & =83(\cdot 095 \ldots .)\left(\mathrm{cm}^{3}\right) \text { or } 26 \cdot 45 \pi \\ & \text { (Density of metal }=\text { ) } 423 \cdot 1 \div 83(\cdot 095 \ldots) \end{aligned}$ <br> Accept an answer between 5 and $5 \cdot 1\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$ | M1 <br> A1 <br> M1 <br> A1 | May be seen or implied in later working. <br> Accept an answer between 83 and $83 \cdot 11$ inclusive. <br> FT $423 \cdot 1 \div$ 'their volume of cylinder', provided not 5 or $2 \cdot 3$ (derived or stated). <br> Ignore any attempt to change units (e.g. $423 \cdot 1 \div 83 \div 1000$ ). <br> Mark final answer. |

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
11. Alternative method: \\
(Density of metal =) \(\quad \frac{423 \cdot 1}{\pi \times 2 \cdot 3^{2} \times 5}\) \\
Accept an answer between 5 and \(5 \cdot 1\left(\mathrm{~g} / \mathrm{cm}^{3}\right)\)
\end{tabular} \& M2

A2 \& | Award M1 for sight of $\pi \times 2 \cdot 3^{2} \times 5$. |
| :--- |
| A1 for sight of $423.1 / 26.45 \pi$ or $15.9(96 \ldots) / \pi$ or any other simplified fraction with one step left to carry out. | <br>

\hline | 12. |
| :--- |
| One correct evaluation $1 \leq x \leq 2$ |
| 2 correct evaluations $1 \cdot 15 \leq x \leq 1 \cdot 35$, (one value $<0$, one value $>0$ ) |
| 2 correct evaluations $1 \cdot 15 \leq x \leq 1 \cdot 25$, (one value $<0$, one value $>0$ ) $x=1 \cdot 2$ | \& B1

B1

M1

A1 \& | Correct evaluation regarded as enough to identify if < 0 or > 0 . |
| :--- |
| Look out for testing $x^{3}+5 x=8$ or equivalent |
| If evaluations not seen accept 'too high' or 'too low'. | <br>

\hline  \& M1
A1
A1

M1
M1
A1

B1 \& | note: $\left(A B^{2}=\right) 324-100$ |
| :--- |
| FT V'their 224' provided M1 gained for M1A0A1. |
| Alternative method to find $A B$ |
| A correct and complete method that would lead to a correct answer (using trigonometric relationships). |
| M2 |
| $(A B=) 14 \cdot 9(66 \ldots)$ or 15 or $4 \sqrt{ } 14$ or $\sqrt{ } 224(\mathrm{~cm}) \quad A 1$ |
| Award M1 for sight of 75 or $20 \sqrt{ } 14$. |
| FT $1 / 2 \times 10 \times$ 'their $A B$ ', provided not 18 or 10 . Accept any valid method that leads to a correct answer. |
| An answer between 254.3 and 254.51 ( $\mathrm{cm}^{2}$ ). |
| Allow 254. |
| Allow 75. |
| Allow rounded or truncated answers. |
| FT 'their area of a circle' - 'their triangle' (not 'their $A B^{\prime}$ ) provided at least one area M1 awarded previously. | <br>

\hline
\end{tabular}

| 14.(a) $3 y \times(y+a)$ or $3 y^{2}+3 a y$ or equivalent $(a=) 4$ | B1 B2 | Award B1 for intention of width $\times$ length. <br> Allow $3 y \times y+a$ for B1. <br> Award B1 for one of the following: <br> - $3 y^{2}+3 a y=3 y^{2}+12 y$ <br> - $3 a=12$ <br> - $3 a y=12 y$. <br> Award B1B2 for unsupported answer of $(a=) 4$. Allow B1B2 for a correct embedded answer BUT only B1B1 if contradicted by $a \neq 4$ or equivalent. |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { 14.(a) } \frac{\text { Alternative Method }}{\text { (Area }=) 3 y(y+4)} \\ & (a=) 4 \end{aligned}$ | B2 | Accept $3 y(1 y+4)$. <br> Award B1 for one of the following: <br> - $3 y(y \pm \ldots .$. <br> - $3 y(\ldots . .+4)$ <br> - $3\left(y^{2}+4 y\right)$ <br> - $y(3 y+12)$ <br> CAO |
| 14.(b) (i) Valid written explanation referring to negative values representing sides <br> e.g. " $(4 \times 2-10=-2)$ you can't have a negative value for a side" <br> " $x$ must be greater than 2.5 to have a positive value for the side" | E1 | Allow "you can't have a negative length". <br> Do not allow <br> - calculations only <br> - "it can't be negative" <br> - "the value can't be negative". |
| 14.(b)(ii) $\begin{aligned} & 14 x-4-2 \times(4 x-10) \text { OR } \\ & 14 x-4-8 x+20 \text { or equivalent } \end{aligned}$ $\text { (sum of both lengths=) } \quad 6 x+16$ <br> (length=) $\quad 3 x+8$ | M2 | May be seen on diagram. <br> Award M1 for intention for a method <br> e.g. $4 x-10+4 x-10+?=14 x-4$ <br> e.g. $14 x-4=?+2 \times(4 x-10)$ <br> e.g. incorrect use of brackets but a clear attempt at <br> the correct calculation is seen: $14 x-4-8 x-20$. <br> FT from M1: $14 x-4$ - 'their $2 \times[4 x-10]$ ' or equivalent, provided 'their $8 x-20$ ' can be expressed in the form $a x+b$, with $\mathrm{a} \& \mathrm{~b} \neq 0$. <br> Note: $14 x-4-8 x-20=6 x-24$ is awarded M1A1. <br> May be seen on diagram. <br> Mark final answer. <br> FT 'their $6 x+16$ ' $\div 2$, provided in the form $a x+b$, with $a \& b \neq 0$. <br> Unsupported $3 x+8$ is awarded M2 A1 B1. <br> If no marks awarded, award SC1 for a final answer of: <br> - $3 x+c(c \neq 8)$ <br> - $k x+8(k \neq 3$ and positive $)$. |

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Alternative method: \\
Sight of an appropriate \(7 x-2\)
\[
7 x-2-4 x+10
\]
\[
\text { (length=) } \quad 3 x+8
\]
\end{tabular} \& B1
M2

A1 \& | May be seen on diagram. |
| :--- |
| Award M1 for intention for a method e.g. $4 x-10+?=7 x-2$ [ $14 x-4] \div 2-[4 x-10]$ or equivalent e.g. incorrect use of brackets but a clear attempt at the correct calculation is seen |
| May be seen on diagram. |
| Mark final answer. |
| Allow FT from M1. |
| Unsupported $3 x+8$ is awarded B1 M2 A1. |
| If no marks awarded, award SC1 for a final answer of: |
| - $3 x+c(c \neq 8)$ |
| - $k x+8$ ( $k \neq 3$ and positive). | <br>

\hline 15.

$$
Y Z=\frac{7}{\cos 41\left(^{\circ}\right)} \text { or } 7 \div \cos 41\left(^{\circ}\right)
$$

$$
=9.27(\ldots) \text { or } 9.28(\mathrm{~cm}) \text { or } 9.3(\mathrm{~cm})
$$ \& M2

A1 \& | Award M2 for $Y Z=7 \div \sin 49(\times \sin 90)$ or $\frac{7(x \sin 90)}{\sin 49}$ |
| :--- |
| Award M1 for one of the following: |
| - $\cos 41=\frac{7}{Y Z}$ |
| - $\sin 49=\underline{7}$ |
| - $\frac{Y Z}{\sin 90}=\frac{7}{\sin 49}$. |
| Accept 9 (cm) from correct working. CAO. | <br>

\hline | 15. Alternative method: |
| :--- |
| Correct use of 'two-step' method. $=9 \cdot 27(\ldots) \text { or } 9 \cdot 28(\mathrm{~cm}) \text { or } 9.3(\mathrm{~cm})$ | \& \[

$$
\begin{aligned}
& M 2 \\
& A 1
\end{aligned}
$$
\] \& A partial trigonometric method is MO. Accept 9 (cm) from correct working. <br>

\hline $$
\begin{aligned}
& 16 . \\
& 25.55 \text { (seconds) }-12.35 \text { (seconds) } \\
& \text { OR } \\
& 25.5 \text { (seconds) }-12.4 \text { (seconds) }+2 \times 0.05 \text { (sec) } \\
& =13.2 \text { (seconds) }
\end{aligned}
$$ \& M2

A1 \& | Award M2 for USE of the correct bounds. |
| :--- |
| If many attempts are offered without a |
| method/answer being identified, then mark the final attempt. |
| If M2 not gained, award M1 A0 for correct USE of values $12 \cdot 3 \leq \mathrm{t}<12.4$ and $25.5<\mathrm{t} \leq 25.6$. |
| [Note: 25.549 is equivalent to 25.55 and with an answer of 13.2 (seconds) gains all 3 marks] |
| CAO. |
| Mark final answer. |
| Unsupported 13.2 is awarded M2 A1. | <br>

\hline 17. $\frac{64}{160} \times 100$ OR $\frac{64}{1 \cdot 6}$ or equivalent

\[
=40

\] \& \& | Do not award M1 for $160 \%=64$. |
| :--- |
| Award M1A1 for an embedded answer (e.g. $40 \times 1.6=64$ or $\frac{64}{40} \times 100=160$ ), BUT only |
| M 1 A 0 if contradicted by stating original amount $\neq 40$. |
| Unsupported 40 is awarded M1 A1. |
| Unsupported $40 \%$ is awarded MO A0. | <br>

\hline
\end{tabular}

| 18. (a) Complete diagram | B2 | Award B1 for one of the following: <br> - $2 / 5$ or equivalent on 'Blue' Bag A branch <br> - 0.75 or equivalent on a correct 'Blue' Bag B branch. |
| :---: | :---: | :---: |
|  |  |  |
| 18. (b) |  | Check diagram for answers. <br> FT 'their $2 / 5$ ' from bag A blue branch, only if between 0 and 1. <br> FT 'their 0.75 ' from bag B blue branch, only if between 0 and 1 . |
| Sight of $\frac{3}{5} \times 0.25$ OR $\frac{2}{5} \times 0.75$ or equivalent | B1 | Award B1 for sight of 0.15 OR 0.3 or equivalent. |
| $\frac{3}{5} \times 0.25+\frac{2}{5} \times 0.75$ or equivalent | M1 | Award M1 for $0.15+0.3$. |
| 0.45 or 9/20 or equivalent ISW | A1 | Only FT, provided answer is less than 1. |
| 19. |  |  |
| Method to eliminate one variable e.g. equal coefficients AND appropriate intention to add or subtract or use a method of substitution. | M1 | Allow one error in one term (not the term with equal coefficients). |
| First variable found $\quad x=-4$ or $\quad y=2$ | A1 | CAO. <br> Answer must be whole number (e.g. not $x=-12 / 3$ ) |
| Substitute to find the $2^{\text {nd }}$ variable. | m1 | FT substitution of their ' 1 st variable' if M1 gained. |
| Second variable found. | A1 | If FT leads to a whole number answer, it must be shown as a whole number. Otherwise, accept a fraction. |
|  |  | No marks for 'trial and improvement'. No marks for an unsupported answer. |

