GCSE MARKING SCHEME

AUTUMN 2022

GCSE
MATHEMATICS
UNIT 1 - INTERMEDIATE TIER 3300U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

AUTUMN 2022 MARK SCHEME

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
4. Choice of length, width and height such that length \(\times\) width \(\times\) height \(=12\)
\[
\text { i.e. } \begin{aligned}
\& 12 \times 1 \times 1 \\
\& 6 \times 2 \times 1 \\
\& 4 \times 3 \times 1 \\
\& 3 \times 2 \times 2
\end{aligned}
\] \\
Correct cuboid drawn
\end{tabular} \& B1

B2 \& | Must be whole numbers for B1. |
| :--- |
| May be seen in any order. |
| Award B1 if length, width and height are not stated but implied by the cuboid drawn. |
| Ignore orientation of cuboid. |
| FT 'their length, width and height'. |
| For B2, their cuboid must have edges along or parallel to the 3 directions usually associated with isometric paper (the two diagonals and the vertical). |
| Award B1 for one of the following: |
| - any one edge dealt with correctly for all its three visible occurrences in a cuboid |
| - a cuboid drawn with volume $12 \mathrm{~cm}^{3}$ with a different length, width and height stated on answer line (e.g. $3 \times 2 \times 2$ stated on answer lines, but $6 \times 2 \times 1$ cuboid drawn). |
| For any mark to be awarded the line must go 'through the dots' AND have both ends 'on a dot'. Ignore attempt at handling 'hidden lines'. |

\hline 5. \& B1
B1

B1 \& | For the first two B marks, accept the number of notes, a list of the notes needed, or value of the notes needed for B1. |
| :--- |
| Allow appropriate sight of $£ 50$ AND $£ 5$ for Andrew for B1. |
| Allow appropriate sight of $£ 20$ AND $£ 15$ for Grace for B1. |
| Answer line take precendence. |
| FT provided at least B1 previously awarded. |
| Sight of 7 ($£ 10$ notes) and 4 ($£ 5$ notes) implies |
| B1B1B1. |
| A final answer of $£ 70$ and $£ 20$ is awarded B1B1B0. $\begin{array}{llll} \text { Note: The below response is awarded B1B0B1 } \\ \begin{array}{cccc} \text { (Andrew }=) & \mathbf{5} & \text { (£10 notes) } & \text { and } \\ \text { (Grace }=) & \mathbf{3} & \text { (£5 note) } \\ \text { (Total }=) & \mathbf{8} \text { (£10 notes) } & \text { and } & \mathbf{1} \\ \text { (} £ 5 \text { notes) } & \text { and } & \mathbf{2} & \text { (£5 notes) } \end{array} \end{array}$ |
| If no marks are awarded, award SC1 for a number of of $£ 10$ notes + a number of $£ 5$ notes that give a total value of $£ 90$. |

\hline 6.(a)

$$
\begin{aligned}
& 7 p=63 \\
& p=9
\end{aligned}
$$ \& B1

B1 \& | FT from $7 p=k$. |
| :--- |
| Unsupported answer of 9 is awarded B1B1. |
| $p=63 / 7$ is awarded B 1 B 0 . |
| If FT leads to a whole number answer, it must be shown as a whole number. Otherwise accept a fraction (e.g if $7 p=60$, then $p=60 / 7$ is awarded B0B1, but $p=60 \div 7$ is awarded B0B0). |
| Allow B1B1 for a correct embedded answer BUT only B1B0 if contradicted by $p \neq 9$. Mark final answer. |

\hline
\end{tabular}

10.$\frac{20 \times 60}{400}$ or $=3$ or $\frac{20 \times 59}{400}$	M1 A1	May be seen in stages. CAO. Unsupported answer is MO AO.
11. (a) 17	B1	Mark final answer.
11. (b) -1	B1	Mark final answer.
$12 \text { (a) } \frac{2}{15}$	B2	For B2, the answer must be in its simplest form. Award B1 for sight of $\frac{40}{300}$ or equivalent.
12. (b) YES ticked and a valid explanation e.g. "you would expect to get (approximately) equal frequencies if it was unbiased" "you would expect (approximately) 50 of each number" " 6 was thrown a lot of times" "4 was not thrown a lot of times" "the frequencies are not the same" "All the frequencies are different."	E1	Award E1 if Yes or No box ticked but explanation clearly explains that the dice is biased. Allow: "they are not equal" "they are not the same".
12. (c) $\frac{110}{300} \times 2400$ or equivalent $=880$	M1 A1	May be shown in stages. $\frac{880}{2400}$ gains M1A0. Mark final answer.
13. (Area of square $=) 184-[15 \times 9]=$ (Length of side of square $=)^{49\left(\mathrm{~cm}^{2}\right)} 7(\mathrm{~cm})$ (Perimeter of square $=4 \times \sqrt{ } 49=) \quad 28(\mathrm{~cm})$	M2 A1 A1 B1	Award M1 for sight of 15×9 or $135\left(\mathrm{~cm}^{2}\right)$. FT from M2 only, V'their 49'. May be embedded or written on diagram. FT 'their derived 7'. May be written on diagram.
14.(a) 20 AND 105 in correct position Total of 70 for Black Hair Overall total of 200	B1 B1 B1	If 'notches/tallies' are used, penalise -1 once. B0 if any other number written in the same section. FT 'their 50' + 'their 20', provided both are non-zero values. Note: The answer below is awarded B1B0B1.

14.(b) $\quad \frac{45}{200}$ or $\frac{9}{40}$ or equivalent. ISW	B2	For B2 or B1, the numerator and denominator must be a whole number. FT 'their 20' + 'their 25' provided both sections not blank. Award B1 for one of the following: - a numerator of 45 in a fraction < 1 - FT 'their 20 ' + 'their 25 ', provided both sections are not blank, as a numerator in a fraction < 1 - a denominator of 200 in a fraction <1. An answer of $\frac{45}{200}$ gains $B 2$ regardless of 'their Venn diagram'. Penalise incorrect notation (e.g. '45 in 200') -1 . Note: An answer of $\underline{20}$ is awarded B2. 200 An answer of $\frac{20}{200}$ is awarded B1.
15. Correct construction of 60° at A Correct construction of angle 45° at C	B1 B2	OVERLAY Treat reversed angles at A and C MR-1. Correct construction arcs must be seen and angle drawn. If B 3 , penalise -1 if triangle not completed. Award B1 for one of the following: - correct construction of angle 90° at C - correct bisection of 90° at C , but their own perpendicular line at C drawn - any correct bisection of 90° seen.
16. For a correct method that produces 2 prime factors from the set $\{3,3,5,5,7\}$ before the $2^{\text {nd }}$ error. $\begin{aligned} & 3,3,5,5,7 \\ & 3^{2} \times 5^{2} \times 7 \end{aligned}$	M1 A1 B1	Must be a method that involves only division. CAO for sight of the five correct factors (Ignore 1s) Do not FT non-primes. FT 'their primes' provided at least one index form used with at least a square. Allow (3^{2}) $\left(5^{2}\right)(7)$ and $3^{2} .5^{2} .7$ Do not allow $3^{2}, 5^{2}, 7$. Inclusion of 1 as a factor gets BO.

17. (a) $6 p^{7} q^{8}$	B2	Mark final answer. Award B1 for one of the following: - $6 \times p^{7} \times q^{8}$ - $6 p^{7} \times q^{8}$ - $\quad 6 \times p^{7} q^{8}$ - $6 p^{7} q \cdots$. - $6 p \cdots q^{8}$ - $k p^{7} q^{8}(k \neq 0$ or 6$)$ - \quad Sight of $6 p^{7}$ AND q^{8} in an expression (e.g. $6 p^{7}+q^{8}$).
17.(b) $7 a^{2}+35 a-6 a^{2}-12 a+14$ $=a^{2}+23 a+14$	B2	Award B1 for one of the following: - sight of $7 a^{2}+35 a$ - sight of $-6 a^{2}-12 a+14$ (brackets must be removed). Note: If $7 a^{2}+35 a-6 a^{2}+12 a-14=a^{2}+23 a+14$ is seen, then award B2 B2 (brackets implied). FT for B2 if at least two a^{2} terms AND at least two a terms to be simplified. FT for B1 if at least two a^{2} terms OR at least two a terms to be simplified. Award B2 for $1 a^{2}+23 a+14$. If B2 not awarded, award B1 for one of the following: - correct collection of ' a^{2} terms' (1) a^{2} - correct collection of ' a terms' (+23a). This $2^{\text {nd }} \mathrm{B} 2$ (or B 1) is for their final answer. A correct answer must come from correct workings seen, however $7 a^{2}+35 a-6 a^{2}+12 a-14=a^{2}+23 a+14$ is awarded B2 B2 (brackets implied). Mark final answer. Penalise -1 from the final B1 or B2 mark for any one of the following: - incorrect subsequent working - any attempt to equate their expression to zero (and attempting to solve) - incorrectly factorising. Note (sign error): Award B1B2 for $\begin{aligned} & 7 a^{2}+35 a-6 a^{2}+12 a-14=a^{2}+47 a-14 \\ & 7 a^{2}+35 a-6 a^{2}+12 a+14=a^{2}+47 a+14 \\ & 7 a^{2}+35 a-6 a^{2}-12 a-14=a^{2}+23 a-14 \end{aligned}$
18.(a) (i) 4	B1	Accept 4/1 or equivalent. The correct gradient has to be unambiguously shown. $y=4 x-2$ is B 0 , but $y=(4) x-2$ is B 1 . Award B0 for a final answer of $4 x$.
18.(a) (ii) $\quad y=4 x-2$	B2	FT 'their gradient' from (a) Award B1 for one of the following: - $y=4 x \pm k$ - $y=k x-2(k \neq 0)$ - $4 x-2$ (' $y=$ ' missing) - $y=4 x+-2$.

18 (b) Valid explanation with rearranged equation AND indicating that the gradient is 3 or equivalent e.g. " $2 \mathrm{y}-6 x=23$ is the same as $y=3 x+11 \cdot 5$, so the gradient of both lines is 3 " " $2 y=6 x+23$ and $2 y=6 x-16$ and the gradient of both lines is 3 ".	B2	B1 for one of the following: - sight of $y=3 x+k(k \neq 0$ or -8$)$ - sight of $y=\frac{6 x+23}{2}$ - showing 2 equivalent equations written in the same format e.g. $2 y=6 x+23$ and $2 y=6 x-16$ - unsupported statement that both the gradients are 3 . Allow "the $3 x$ or 3 show the lines are parallel" as an explanation. Do not allow: - "the gradients are the same" unless the ' 3 ' is also given or unambiguously shown - \quad gradient $=3 x$.
19. (Volume) Area None Volume Length None	B3	Must use the terminology given in the question. B3 for all 5 correct. B2 for 3 or 4 correct. B1 for 2 correct. B0 otherwise.
20.(a) $\quad 5(\cdot 0) \times 10^{6}$	B2	Mark final answer. Award B1 for one of the following: - sight of 0.5×10^{7} - sight of 5000000 - equivalent correct value but not in standard form - sight of 30000 AND 0.006 - 5×10^{n} ($n \geq 3$, but not 6), following one place value error in one of the given numbers.
20.(b) $4.795(0) \times 10^{4}$	B2	Mark final answer. B1 for one of the following: - sight of $479.5(0) \times 10^{2}$ - $4.8(0) \times 10^{4}$ - sight of 47950 - equivalent correct value but not in standard form - sight of 47800 AND 150 - 'their 47950 ' is written correctly in standard form, following one place value error in one of the given numbers or in the addition of 47800 AND 150.
21.(a) $x=\sqrt{25^{2}-10^{2}}$	B1	
21. (b) $\sin 40^{\circ}=\frac{y}{25}$	B1	

22.

$$
\begin{aligned}
& P O Q=180-(2 \times 38) \\
& 104\left(^{\circ}\right) \\
& x=52\left(^{\circ}\right)
\end{aligned}
$$

For two valid angle properties appropriately stated with at least one circle property (e.g. two radii make an isosceles triangle AND angle subtended by an arc at the centre of a circle is twice the angle subtended at the circumference).

22. Alternative method-angles in a semi-circle
Extending the line (PO or QO) to create a right-
angled triangle
$\qquad 180-90-38$
$\quad x=52\left({ }^{\circ}\right)$
For two valid angle properties appropriately stated

