GCSE MARKING SCHEME

AUTUMN 2022

GCSE
MATHEMATICS
UNIT 1 - HIGHER TIER 3300U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS

AUTUMN 2022 MARK SCHEME

Unit 1: Higher Tier	Mark	Comments
1.(a) 20 AND 105 in correct position Total of 70 for Black Hair Overall total of 200	B1 B1 B1	If 'notches/tallies' are used, penalise -1 once. B0 if any other number written in the same section. FT 'their 50' + 'their 20', provided both are non-zero values. Note: The answer below is awarded B1B0B1.
1.(b) $\quad \frac{45}{200}$ or $\frac{9}{40}$ or equivalent. ISW	B2	For B2 or B1, the numerator and denominator must be a whole number. FT 'their 20' + 'their 25' provided both sections not blank. Award B1 for one of the following: - a numerator of 45 in a fraction <1 - FT 'their 20 ' + 'their 25 ', provided both sections are not blank, as a numerator in a fraction < 1 - a denominator of 200 in a fraction <1. An answer of 45 gains B2 regardless of 'their 200 Venn diagram'. Penalise incorrect notation (e.g. '45 in 200') $\mathbf{- 1}$. Note: An answer of $\underline{20}$ is awarded B2. 200 An answer of $\underline{20}$ is awarded B1. 200

2. Correct construction of 60° at A Correct construction of angle 45° at C	$\begin{aligned} & \text { B1 } \\ & \text { B2 } \end{aligned}$	Treat reversed angles at A and C MR-1. Correct construction arcs must be seen and angle drawn. If B 3 , penalise -1 if triangle not completed. Award B1 for one of the following: - correct construction of angle 90° at C - correct bisection of 90° at C , but their own perpendicular line at C drawn - any correct bisection of 90° seen.
3. For a correct method that produces 2 prime factors from the set $\{3,3,5,5,7\}$ before the $2^{\text {nd }}$ error. $\begin{aligned} & 3,3,5,5,7 \\ & 3^{2} \times 5^{2} \times 7 \end{aligned}$	M1 A1 B1	Must be a method that involves only division CAO for sight of the five correct factors (Ignore 1s) Do not FT non-primes. FT 'their primes' provided at least one index form used with at least a square. Allow (3^{2})($\left.5^{2}\right)(7)$ and $3^{2} .5^{2} .7$ Do not allow $3^{2}, 5^{2}, 7$. Inclusion of 1 as a factor gets BO.
4.(a) $6 p^{7} q^{8}$	B2	Mark final answer Award B1 for one of the following: - $6 \times p^{7} \times q^{8}$ - $6 p^{7} \times q^{8}$ - $\quad 6 \times p^{7} q^{8}$ - $6 p^{7} q^{\cdots}$ - $6 p \cdots q^{8}$ - $k p^{7} q^{8}(k \neq 0$ or 6$)$ - Sight of $6 p^{7}$ AND q^{8} in an expression (e.g. $6 p^{7}$ $+q^{8}$).

4.(b)	$7 a^{2}+35 a-6 a^{2}-12 a+14$ $=a^{2}+23 a+14$	B2	Award B1 for one of the following: - sight of $7 a^{2}+35 a$. - sight of $-6 a^{2}-12 a+14$ (brackets must be removed) Note: If $7 a^{2}+35 a-6 a^{2}+12 a-14=a^{2}+23 a+14$ is seen, then award B2 B2 (brackets implied). FT for B2 if at least two a^{2} terms AND at least two a terms to be simplified. FT for B1 if at least two a^{2} terms OR at least two a terms to be simplified. Award B2 for $1 a^{2}+23 a+14$ If B2 not awarded, award B1 for one of the following: - correct collection of ' a^{2} terms' (1) a^{2} - correct collection of ' a terms' (+23a). This $2^{\text {nd }} \mathrm{B} 2$ (or B 1) is for their final answer. A correct answer must come from correct workings seen, however $7 a^{2}+35 a-6 a^{2}+12 a-14=a^{2}+23 a+14$ is awarded B2 B2 (brackets implied). Mark final answer Penalise -1 from the final B1 or B2 mark for any one of the following: - incorrect subsequent working - any attempt to equate their expression to zero (and attempting to solve) - incorrectly factorising Note (sign error): Award B1B2 for $\begin{aligned} & 7 a^{2}+35 a-6 a^{2}+12 a+14=a^{2}+47 a+14 \\ & 7 a^{2}+35 a-6 a^{2}+12 a-14=a^{2}+47 a-14 \\ & 7 a^{2}+35 a-6 a^{2}-12 a-14=a^{2}+23 a-14 \end{aligned}$
5.(a) (i)	4	B1	Accept $4 / 1$ or equivalent. The correct gradient has to be unambiguously shown. $y=4 x-2$ is BO , but $y=(4) x-2^{-}$is B 1 . Award BO for a final answer of $4 x$.
5. (a) (ii)	$y=4 x-2$	B2	FT 'their gradient' from (a) Award B 1 for one of the following: - $y=4 x \pm k$. - $y=k x-2(k \neq 0)$ - $4 x-2$ (' $y=$ ' missing) - $y=4 x+-2$.

5. (b) Valid explanation with rearranged equation AND indicating that the gradient is 3 or equivalent e.g. " $2 \mathrm{y}-6 x=23$ is the same as $y=3 x+11 \cdot 5$, so the gradient of both lines is 3 " " $2 y=6 x+23$ and $2 y=6 x-16$ and the gradient of both lines is $3^{\prime \prime}$	B2	B1 for one of the following: - sight of $y=3 x+k(k \neq 0$ or -8$)$ - sight of $y=\frac{6 x+23}{2}$ - showing 2 equivalent equations written in the same format e.g. $2 y=6 x+23$ and $2 y=6 x-16$ - unsupported statement that both the gradients are 3 . Allow "the $3 x$ (or 3) show the lines are parallel" as an explanation Do not allow: - "the gradients are the same" unless the ' 3 ' is also given or unambiguously shown - \quad gradient $=3 x$.
6. (Volume) Area None Volume Length None		Must use the terminology given in the question. B3 for all 5 correct. B2 for 3 or 4 correct. B1 for 2 correct. B0 otherwise.
7.(a) $5(\cdot 0) \times 10^{6}$	B2	Mark final answer. Award B1 for one of the following: - \quad sight of 0.5×10^{7} - sight of 5000000 - equivalent correct value but not in standard form. - sight of 30000 AND 0.006 - 5×10^{n} ($n \geq 3$, but not 6), following one place value error in one of the given numbers.
7.(b) $\quad 4.795(0) \times 10^{4}$	B2	Mark final answer. B1 for one of the following: - sight of $479 \cdot 5(0) \times 10^{2}$ - $4.8(0) \times 10^{4}$ - sight of 47950 - equivalent correct value but not in standard form. - sight of 47800 AND 150 - 'their 47950 ' is written correctly in standard form, following one place value error in one of the given numbers or in the addition of 47800 AND 150.
8.(a) $\quad x=\sqrt{25^{2}-10^{2}}$	B1	
$\text { 8. (b) } \quad \sin 40^{\circ}=\frac{y}{25}$	B1	

9. $\begin{array}{cc} P O Q=180-(2 \times 38) & \\ & 104\left({ }^{\circ}\right) \\ x=52\left({ }^{\circ}\right) \end{array}$ For two valid angle properties appropriately stated with at least one circle property (e.g. two radii make an isosceles triangle AND angle subtended by an arc at the centre of a circle is twice the angle subtended at the circumference)	M1 A1 B1 E1	Check diagram for answers. Award M1A1 for sight of 104. FT 'their 104' $\div 2$. Award E1 for any one correct appropriate angle property AND any one appropriate correct circle property associated with correct workings. ISW any other incorrect properties. Allow - "the angles in a triangle (add to 180°)" for the 'angle' property - "angle at the centre (theorem)" - "equal radii" for isosceles.
9. Alternative method-angles in a semi-circle Extending the line ($P O$ or $Q O$) to create a right-angle triangle $\begin{aligned} & 180-90-38 \\ & x=52\left(^{\circ}\right) \end{aligned}$ For two valid angle properties appropriately stated with at least one circle property (e.g. the angle subtended at the circumference by a semicircle is a right angle AND that angles in the same segment are equal)	S1 M1 A1 E1	Shown on diagram M1 implies S1

10.	(Least number of apples Twm picked =)	9	B2	An answer must be given following work from an inequality. Award B2 for $n=9$. FT for B2 or B1, from 'their inequality', if of equivalent difficulty (must be at least 3 terms, with at least 2 ' n ' terms and a constant). Possible scenarios: $1^{\text {st }} \mathrm{B} 2$ 2nd B2		
				Inequality used	$\begin{aligned} & \text { B2 awarded } \\ & \text { for: } \\ & \hline \end{aligned}$	B1 awarded for:
				$5 n-7>n+26$ B2 awarded	9	Sight of: - $4 n>33$ - $n>\frac{33}{4}$ or equiv - $8(-25)$ One slip in solving the inequality, but final answer rounded correctly
				$5 n-7>n+19$ B1 awarded $5 n>n+26$ B1 awarded	7	Sight of: - $4 n>26$ - $n>\frac{26}{4}$ or equiv -6(•5) One slip in solving the inequality, but final answer rounded correctly
				$5 n-7<n+26$ B1 awarded		Sight of: $\begin{aligned} & \text { - } 4 n<33 \\ & \text { - } n<\frac{33}{4} \text { or equiv } \end{aligned}$
				Unsupported answ If BO BO, award SC without showing an Use of equations If an equation is us (see bullet points) If B 1 for an equatio second B2 or B1 co evidence that the e an inequality (e.g. n If an inequality is sh B 2 B 2 is possible.	ers or no inequ 1 for an unsup y working or no ed throughout and then BO is n is awarded uld be award quation has th >8.25, so an hown and then	lity shown orted answer of 9 inequality shown. possible first B1 varded. e bullet points), a if there is been turned to er is 9). quation used,

Organisation Accuracy of w	mmu			OC1	For OC1, candidates will be expected to: - present their response in a structured way - explain to the reader what they are doing at each step of their response - lay out their explanation and working in a way that is clear and logical - write a conclusion that draws together their results and explains what their answer means For W1, candidates will be expected to: - show all their working - make few, if any, errors in spelling, punctuation and grammar - use correct mathematical form in their working - use appropriate terminology, units, etc.
$\begin{aligned} & \text { 11.(a) (i) } y a x^{3} \text { OR } \quad y=k x^{3} \\ & 108=k \times 3^{3} \text { OR } k=4 \\ & (y=) 4 x^{3} \end{aligned}$				B1 M1 A1	Allow $y a k x^{3}$ M1 implies B1. F.T. from $y \alpha x^{n}$ with $n>1$ or $n=-3$ Use of $n=-3$ leads to $k=2916$ Use of $n=2$ leads to $k=12$ May be seen in part (ii)
$\begin{array}{l\|} \hline \text { 11.(a) (ii) } \\ \\ \hline \end{array}$	3 108	5 500	10 4000	B2	B1 for each correct value. Check working space if table is empty. F.T. from 'their k', provided M1 awarded (accept answer left as a root) (No FT for $y=(1) x^{3}$) F.T. from $y \quad \alpha x^{n}$ with $n>1$ or $n=-3$ Use of $n=-3$ leads to answers of 23.328 and 0.9 Use of $n=2$ leads to answers of 300 and $\sqrt{ }(1000 / 3)$
11.(b) Valid statement e.g. e is halved; e is divided by 2				E1	
12. Reference to: Enlargement Scale factor -2 Centre of enlargement $(-3,1)$				$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	If B 3 , penalise -1 for a multi-stage transformation e.g. extra 'rotation 180°
13. $A E=C E$ (Given) $B E=D E$ (Given) Angle $A E B=$ Angle $C E D$ (Vertically opposite angles) SAS (therefore triangle $A B E$ and triangle $C D E$ are congruent)				B2	All 3 stated. 'Notches' or 'arcs' (or labelling) on the diagram are insufficient. B1 for 1 or 2 stated. Additional (correct or incorrect) statements may be ignored. FT provided at least B1 awarded. Allow an equivalent statement e.g. 'two sides and the included angle' (but not e.g. 'two sides and an angle').
14. Lines $y=\frac{1}{2} x+1, y+x=0$ and $x=3$ all correct.Correct region identified.				B2	B1 for any 2 correct lines. If $y=3$ and any other vertical or horizontal line shown e.g. $y= \pm 3$ or $x=-3$, do not award a mark unless $x=$ 3 is selected for the region or clearly labelled. Strict FT provided B1 awarded. Accept indication by 'shading out'.

\begin{tabular}{|c|c|c|}
\hline \(x=0.6545454 \ldots .\).
15.(a) \begin{tabular}{l}
\(x=\) \\
and \(100 x=65.45454 \ldots\) \\
with an attempt to subtract
\end{tabular}
\(648 / 990\)
\((=324 / 495=108 / 165=36 / 55\) or equivalent \()\) \& M1 \& \begin{tabular}{l}
Complete method. \\
Or \(10 x\) and \(1000 x\), or equivalent. Or a complete alternative method. \\
\(x\) and \(10000 x\) gives an answer of 65448 / 99990 . \\
An answer of 64.8/99 gains M1 only. ISW
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 15.(a) } \frac{\text { Alternative method }}{0.6+0.0545454 \ldots . . .=6 / 10+54 / 990 \text { or equivalent }} \\
\& 648 / 990 \quad \\
\& \quad(=36 / 55 \text { or equivalent })
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& An answer of 64.8/99 gains M1 only. ISW \\
\hline 15.(b) 1/9 \& B2 \& \begin{tabular}{l}
B1 for \(9^{-1}\) or \(1 / 3^{2}\) or \((1 / 3)^{2}\) or \(1 / 3 \sqrt{729}\) or \(1 / 729^{1 / 3}\) or \((1 / 729)^{1 / 3}\) or \({ }^{3} \sqrt{ }(1 / 729)\) \\
Mark final answer.
\end{tabular} \\
\hline \[
\text { 16. } \begin{array}{rlr}
\left(\frac{1}{3} \pi r^{2} h\right. \& =) \pi r^{2} \times \frac{3 r}{2} \& \text { or equivalent } \\
2 \pi r^{2} h \& =3 \pi r^{2} \times 3 r \& \text { or equivalent } \\
\frac{1}{3} h \& =\frac{3 r}{2} \& \text { or equivalent } \\
h \& =\frac{3 \pi r^{2} \times 3 r}{2 \pi r^{2}} \& \text { or equivalent } \\
h \& =\frac{9 r}{2} \text { or equivalent }
\end{array}
\] \& M1
M1

A1 \& | Correct expression for volume of cylinder |
| :--- |
| Equating volumes AND one further step to find h e.g. |
| - clearing fractions |
| - cancelling π or r^{2} or both |
| - isolating h (unsimplified) |
| Correct simplified expression. |
| Award full marks for a correct answer, provided no incorrect working seen. |

\hline 17.

\[
$$
\begin{aligned}
& \sqrt{20}=2 \sqrt{5} \\
& (\sqrt{5})^{3}=5 \sqrt{5} \\
& \left(\frac{2 \sqrt{5}+5 \sqrt{5}+11 \sqrt{5}}{3}=\right) \\
& 6 \sqrt{5}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 |
| B1 | \& | FT provided B1 already awarded AND provided all terms are of the form $a \sqrt{5}$ (and the answer is $b \sqrt{5}$ where b is an integer). |
| :--- |
| $18 \sqrt{5}$ (with no contradictory working) implies $B 2$. $6 \sqrt{5}$ (with no contradictory working) implies B3. |

\hline 18. Strategy P (blue, yellow) and P (yellow, blue)

$$
\begin{array}{r}
7 / 10 \times 5 / 11+3 / 10 \times 9 / 11 \\
=62 / 110(=31 / 55)
\end{array}
$$ \& S1

M2

A1 \& | Any indication e.g. tree diagram with relevant branches identified |
| :--- |
| M1 for sight of $7 / 10 \times 5 / 11$ or $3 / 10 \times 9 / 11$ |
| OR |
| M1 for a (consistent) error in a denominator within an otherwise complete calculation |
| ISW |
| If M0 A0, award (S1) SC1 for an answer of 42/90 or $52 / 100$ or $62 / 120$ or equivalent (from nonreplacement or replacing with one card only or replacing original card as well as additional cards.) |

\hline
\end{tabular}

Alternative method Strategy 1 - [P(blue, blue) $+P$ (yellow, yellow) $]$ $1-[7 / 10 \times 6 / 11+3 / 10 \times 2 / 11]$ $=62 / 110(=31 / 55)$	S1 M2 A1	Any indication e.g. tree diagram with relevant branches identified M1 for sight of $7 / 10 \times 6 / 11$ or $3 / 10 \times 2 / 11$ OR M1 for a (consistent) error in a denominator within an otherwise complete calculation ISW If MO AO, award (S1) SC1 for an answer of 42/90 or 52/100 or 62/120 or equivalent (from nonreplacement or replacing with one card only or replacing original card as well as additional cards.)
19.(a) (i) (-5, 8)	B1	
19.(a) (ii) (2, 4)	B1	
19.(b) $y=f(-x)$	B1	
20. 155° and 205° with no other values	B2	B1 for either angle. Check diagram. Ignore extra (correct or incorrect) values outside the required range Penalise - 1 for each extra value within range (beyond 2 attempts).
21. $\mathrm{x}(4 \mathrm{x}-5)=2(x+1)$ or equivalent $\begin{aligned} & 4 x^{2}-7 x-2[=0] \\ & (4 x+1)(x-2)[=0] \end{aligned}$ $x=-\frac{1}{4} \text { AND } x=2$	M1 A1 B2 B1	M1 for sight of $(4 \mathrm{x}-5)$ AND $2(x+1)$ or equivalent Ignore presence of denominator (provided correct). B1 for $(4 x \ldots .1)(x \ldots 2)$ OR for $(2 x \pm 1)(2 x \mp 2)$ FT their quadratic equation, provided of equivalent difficulty. Both answers required. Strict FT 'their derived brackets'. Allow use of quadratic formula FT their quadratic equation, provided of equivalent difficulty. $\begin{equation*} (x=) \frac{7 \pm \sqrt{\left[(-7)^{2}-4(4)(-2)\right]}}{2(4)} \tag{M1} \end{equation*}$ For M1, allow one error, in sign or substitution, but not in formula. $\begin{equation*} x=\frac{7 \pm \sqrt{ } 81}{8} \tag{A1} \end{equation*}$ $x=-\frac{1}{4}$ AND $x=2$ (both answers required) A1 No marks for a trial and improvement method.

