Surname
First name(s)

Centre Number

Candidate Number
0

THURSDAY, 10 NOVEMBER 2022 - MORNING

MATHEMATICS - NUMERACY UNIT 2: CALCULATOR-ALLOWED HIGHER TIER

1 hour 45 minutes

ADDITIONAL MATERIALS

A calculator will be required for this examination.
A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space, use the additional page at the back of the booklet. Question numbers must be given for the work written on the additional page.
Take π as 3.14 or use the π button on your calculator.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	9	
2.	12	
3.	13	
4.	8	
5.	6	
6.	7	
7.	13	
8.	12	
Total	80	

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
In question 1, the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

Formula List - Higher Tier

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$ are given by $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Annual Equivalent Rate (AER)

AER, as a decimal, is calculated using the formula $\left(1+\frac{i}{n}\right)^{n}-1$, where i is the nominal interest rate per annum as a decimal and n is the number of compounding periods per annum.

1. In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

Last year, Viktor's total income before tax was 28000 euros.
The tax bands, taxable income and tax rates for last year were as follows:

Band	Taxable income	Tax rate
Personal allowance	Up to 10000 euros	0%
Basic rate	10000 euros to 25000 euros	22%
Higher rate	Over 25000 euros	35%

Viktor has already paid 3600 euros towards his income tax bill for last year.
Calculate how much income tax Viktor still owes.
You must show all your working.
[7 + 2 OCW]
Examiner
2. Delyth and Ronnie are both students at the local college.
(a) Their houses and the college are all joined by straight roads, as shown in the diagram.

Diagram not drawn to scale

Delyth usually walks directly to college.
Calculate how much further Delyth has to walk if she passes Ronnie's house on her way to college.
(b) 35 students were asked how far they travelled to the college.

The results are recorded in the table below.

Distance, d (metres)	Frequency
$100<d \leqslant 200$	9
$200<d \leqslant 1000$	10
$1000<d \leqslant 3000$	15
$3000<d \leqslant 7000$	1

(i) Ronnie is one of these 35 students.

He walks 200 m directly to college.
Does Ronnie travel further than the median distance travelled by these 35 students?

You must give a reason for your answer.
\qquad
(ii) Calculate an estimate of the mean distance these 35 students travelled to the college.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Estimate of the mean distance travelled by these 35 students is m
(c) There are 140 students who travel by bus to and from college.

Delyth wants to find out why these students do not walk to college.
She has decided to use a systematic sampling method to select 7 of these students to form a discussion group.

The names of all the 140 students are in a list.
Delyth has randomly selected the 2nd student in the list to join the discussion group.
Complete the table below to give the positions in the list of the 7 students selected to join the discussion group.

Student	1	2	3	4	5	6	7
Position in the list	2nd	\ldots					

3. (a) 10 years ago, Matteo bought a car for $£ 4500$.
4. (a) 10 years ago, Matteo bought a car for $£ 4500$.
H His car depreciated in value by 20% in the first year. In each of the following years, his car depreciated by 14% of its previous year's value.

Show that the value of Matteo's car is now less than $£ 950$.
You must show all your working.
(b) Matteo's car insurance has increased by 25% from the amount he paid last year. His car insurance is $£ 750$ this year.

Calculate the amount Matteo paid for his car insurance last year.
\qquad
\qquad
\qquad
\qquad
\qquad

Matteo paid $£$ for his car insurance last year.
(c) The diagram below shows the front of Matteo's garage.

Calculate the width of Matteo's garage.
\qquad
(d) The length of Matteo's car is 400 cm , correct to the nearest 10 cm . The length of his garage is 550 cm , correct to the nearest 10 cm .

When Matteo parks his car, he leaves exactly 70 cm between the car and the back wall of the garage.

Calculate the maximum length of the space between Matteo's car and the garage door.

\longleftarrow Length of garage
4. (a) The population of Barbados in 1644 was said to be 30000 .

By 1964, the population of Barbados had increased by 682%. From 1964 to 2014, the population of Barbados increased by a further 20%.

Calculate the population of Barbados in 2014.
You must show all your working.
(b) The area of Barbados is $432 \mathrm{~km}^{2}$.

The population of Barbados in September 2019 was 287106.
Calculate the population density of Barbados in September 2019.
Give your answer correct to 2 significant figures.
(c) The density of some of the sand in Barbados is $1442 \mathrm{~kg} / \mathrm{m}^{3}$.

Express this density in $\mathrm{g} / \mathrm{cm}^{3}$.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

5. Gareth's living room is rectangular. It has a doorway close to one of the corners of the room.

Diagrams not drawn to scale
Gareth's living room door is 76 cm wide.
The door hinge is 41 cm from the corner of the room.
When the door is fully open, it touches the wall 64 cm from the corner.

Diagram not drawn to scale

The shaded region in the diagram is an unusable part of his living room floor.

By first finding the size of angle x, calculate the area of this unusable part of Gareth's living
6. Rebecca needs to save $£ 10000$ for the deposit to buy a new house. She has opened a savings account with Dragon Building Society. The account has a nominal annual rate of 5.4%, with interest paid on the last day of every month.

The formula for calculating the amount of money in the account at the end of every month is:

$$
A=M\left(\frac{\left((1+r)^{n}-1\right)(1+r)}{r}\right)
$$

where:
A is the amount of money in the account at the end of every month, M is the amount deposited into the account on the 1st day of each month, r is the monthly interest rate written as a decimal, n is the number of months the account has been open.

Rebecca opened the account on 1st August 2022, depositing $£ 335$ into the account. She will deposit $£ 335$ into the account on the 1st day of every month.
(a) At the end of which month, and in which year, will Rebecca have the $£ 10000$ she needs?
You must show all your working.
\qquad

Rebecca will have the $£ 10000$ at the end of \qquad in the year
(b) Calculate the AER for Rebecca's savings account.

Give your answer as a percentage, correct to 2 decimal places.
Examiner
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Rebecca's friend, Seren, opened a similar savings account with Dragon Building Society on 1st June 2020, depositing $£ 300$.
Seren then deposited $£ 300$ into the account on the 1st day of every month. By 30th November 2021, Seren had $£ 5636.84$ in the account.

How much interest had Seren received?
Circle your answer.
£236.84 £636.84 £836.84 £3836.84 £4136.84
7. (a) The Great Pyramid of Giza, in Egypt, is the oldest of the Seven Wonders of the Ancient World.

It is a square-based pyramid of base length 230 m .
It stands on horizontal ground.
Each of the sloping edges of the pyramid has a length of 217 m .

Calculate the volume of the Great Pyramid of Giza.
(b) (i) A gift shop in Giza makes souvenir pyramids.

They are based on the Great Pyramid.
The shop paints all the faces of the souvenir pyramids.
The base length of a souvenir pyramid is related to the total surface area to be painted by the formula:

$$
b=\sqrt{\frac{A}{1+\tan 58^{\circ}}}
$$

where:

- b is the base length
- A is the total surface area to be painted.

Calculate the total surface area to be painted of a souvenir pyramid that has a base length of 12 cm .
(ii) The Sphinx is another ancient monument that sits next to the Great Pyramid. The shop sells two sizes of Sphinx souvenirs that are mathematically similar.

The small souvenir has a length of 15 cm and a total surface area to be painted of $400 \mathrm{~cm}^{2}$. The large souvenir has a length of 31.5 cm .
Calculate the total surface area to be painted of the large souvenir.
\qquad
8. Two cruise ships, The Explorer and The Magellan, leave the same port at 06:30. The Explorer sails at a speed of $30 \mathrm{~km} / \mathrm{h}$ on a bearing of 051°. The Magellan sails at a speed of $35 \mathrm{~km} / \mathrm{h}$.
The angle between the courses of the two ships when they set sail is 49°.
(a) At 11:00, The Magellan comes to a stop due to engine failure.

The diagram below shows the positions of the two ships at 11:00.

Diagram not drawn to scale

Immediately, The Explorer then heads directly towards The Magellan to pick up its passengers.
It travels at a speed of $30 \mathrm{~km} / \mathrm{h}$.
Calculate the time, to the nearest minute, when The Explorer will reach The Magellan.

Time when The Explorer will reach The Magellan is
(b) Calculate the bearing The Explorer has to sail on from 11:00 onwards to arrive at The Magellan.

END OF PAPER

