

GCSE MARKING SCHEME

SUMMER 2018

GCSE (NEW)
MATHEMATICS – UNIT 2 (HIGHER TIER)
3300U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS (NEW)

SUMMER 2018 MARK SCHEME

GCSE MATHEMATICS	Mark	Comments
Unit 2 : Higher Tier Summer	2018	
1.(a) 8-27	B2	Mark final answer. B1 for sight of 8·26() or for sight of 8·270 or for sight of 8·30 or for sight of 8·3
1.(b) 0·0213	B2	Mark final answer. B1 for sight of 0.0212() Ignore 'recurring dot'.
2.(a) 48°	B1	
2.(b) East	B1	
2.(c) 280°	B1	
One correct evaluation $4 \le x \le 5$ 2 correct evaluations $4 \cdot 25 \le x \le 4 \cdot 45$, one < 0, one > 0. 2 correct evaluations $4 \cdot 25 \le x \le 4 \cdot 35$, one < 0, one > 0. $(x =) 4 \cdot 3$	B1 B1 M1	Correct evaluation regarded as enough to identify if negative or positive. If evaluations not seen accept 'too high' or 'too low'. Look out for equating $x^3 - 7x = 51$
Organisation and Communication Accuracy of writing	OC1	For OC1, candidates will be expected to:
4.(a) 225	B2	 show all their working make few, if any, errors in spelling, punctuation and grammar use correct mathematical form in their working use appropriate terminology, units, etc. Mark final answer. Allow √225 (= 15) as an indication of correct answer and award B2.
		B1 for unambiguous indication that HCF is 15. B1 only for 15 ² if not shown to be 225.
4.(b) 9.6	B2	Mark final answer. B1 for sight of 3⋅2.

5. $(QR^2 =) 1.41^2 + 0.89^2$ $(QR^2) = 2.78(02) \text{ or } (QR) = \sqrt{2.78(02)}$ (QR =) 1.66()(m) or 1.67 (m) or 1.7 (m) OR 166.7() cm or 167 cm	M1 A1 A1	Allow 2·8 for 2·78. FT from M1 for the correctly evaluated square root of 'their 2.78(02)' provided their answer > 1.41 Allow working in centimetres but penalise -1 from any A marks gained if units not shown for final answer e.g. QR ² = 27802 (A1), QR = 166·74 (A1) then -1 BUT QR = 166·74 cm OR 167 cm is M1A1A1.
Alternative method. Correct use of 'two-step' trigonometric relationship.	M2	A partial trigonometric method is M0.
(QR =) 1·66()(m) or 1·67 (m) or 1·7(m) OR 166·7() cm or 167cm	A1	C.A.O.
6.(a) 0.58 on 'Male' branch.	B1	
0.65 and 0.35 correctly shown on both pairs of branches.	B2	B1 if correctly shown on one pair only. SC1 if 0.65 and 0.35 consistently reversed on all branches.
6.(b) 0.42 × 0.35	M1	FT 'their 0·35' (on 'uppermost train branch') provided less than 1
= 0.147 or equivalent. ISW	A1	
7.(a) $x = 3.2 \times \underbrace{8.4}_{5.6}$ OR $\underline{x} = \underbrace{8.4}_{5.6}$ or equivalent.	M1	M1 for correct <u>use</u> of linear ratio.
X = 4.8	A1	NA for compating of linear ratio
7.(b) $y = 6.3 \times \frac{5.6}{8.4}$ OR $y = \frac{5.6}{8.4}$ or equivalent.	M1	M1 for correct <u>use</u> of linear ratio.
y = 4·2	A1	FT a slip in the calculation (not a misuse) of the scale factor in part (a) if used again in (b).
7.(c) Correct strategy of comparing corresponding ratio of lengths.	S1	Sight of 3-9 / 6-5 (or 6-5 / 3-9) along with any pair of corresponding lengths or scale factor used (or corresponding FT lengths from their answers in 7(a) or 7(b)).
Indicates that $3.9 = 0.6$ 6.5 is not equal to $5.6 = 0.666$ or equivalent.	B1	Allow using FT values from 7(a) or 7(b).
Alternative method 1		
(If CD = 3.9 then) RS = 3.9×1.5 = '5.85 (cm)' or/and 'which is not 6.5 '	S1 B1	
Alternative method 2 (If RS = 6.5 then) CD = $6.5 \times 2/3$ = ' 4.3 (cm)' or/and 'which is not 3.9 '	S1 B1	

 8. 2x - y = 6 or equivalent e.g. 12(2x - y) = 72 3x + y = 16·5 or equivalent e.g. 3x + y + 3x + y = 33 Correct method to solve simultaneous equations. M1 Equating a variable (if necessary) AND addir subtracting as appropriate. Allow one slip. x = 4·5 y = 3 A1 C.A.O. from 'their equations' for 1st variable. F.T. from substituting 'their 1st variable' if M1 gained. SC1 if x = 4·5 AND y = 3 given without using simultaneous equations method. This could hafter a B1 (or B1B1) gained or just appear wie equations shown. 	nappen
 3x + y = 16·5 or equivalent e.g. 3x + y + 3x + y = 33 Correct method to solve simultaneous equations. M1 Equating a variable (if necessary) AND addir subtracting as appropriate. Allow one slip. x = 4·5 y = 3 A1 F.T. from substituting 'their 1st variable' if M1 gained. SC1 if x = 4·5 AND y = 3 given without using simultaneous equations method. This could hafter a B1 (or B1B1) gained or just appear without after a B1 (or B1B1) gained or just appear without using simultaneous equations. 	nappen
Correct method to solve simultaneous equations. M1 Equating a variable (if necessary) AND addir subtracting as appropriate. Allow one slip. C.A.O. from 'their equations' for 1 st variable. F.T. from substituting 'their 1 st variable' if M1 gained. SC1 if x = 4·5 AND y = 3 given without using simultaneous equations method. This could hafter a B1 (or B1B1) gained or just appear without after a B1 (or B1B1) gained or just appear without using simultaneous equations.	nappen
subtracting as appropriate. Allow one slip. $x = 4.5$ $y = 3$ A1 A1 C.A.O. from 'their equations' for 1 st variable. F.T. from substituting 'their 1 st variable' if M1 gained. SC1 if $x = 4.5$ AND $y = 3$ given without using simultaneous equations method. This could be after a B1 (or B1B1) gained or just appear without after a B1 (or B1B1) gained or just appear without using simultaneous equations.	nappen
simultaneous equations method. This could he after a B1 (or B1B1) gained or just appear with	nappen
9.(a) Tan ACB = $\frac{6.5}{10.4}$ M1 M1 for equivalent complete method.	
(ACB =) $\tan^{-1} 0.625$ or $\tan^{-1} (6.5 / 10.4)$ A1	
$(x) = 32(^\circ)$ A1 C.A.O. (Implies previous A1.)	
Accept an answer that rounds to 32(°)	
Alternative method.	
Correct use of 'two-step' method. M2 A partial trigonometric method is M0.	
$(x) = 32(^{\circ})$ A1 Accept an answer that rounds to $32(^{\circ})$	
9.(b) (DE =) $9.4 \times \sin[22 + 32](^{\circ})$ M2 FT 22° + 'their 32° '. M0 for using $\sin 22^{\circ}$ or \sin 'their 32° ' alone. M1 for $\underline{DE} = \sin 54(^{\circ})$ 9.4	
= 7·6()(cm) ISW A1 If no marks awarded SC1 for a correct answer (1dp) using their cle stated or shown angle (D)C(E), but not 22° o 32°'.	
Alternative method.	
Correct use of 'two-step' method. (DE) = 7·6()(cm) ISW A1 M2 A partial trigonometric method is M0.	
10. $(2m+17)(2m-17)$ B2 B1 for $(2m17)(2m17)$ OR B1 for $(2m+\sqrt{289})(2m-\sqrt{289})$ OR $4(m+8.5)(m-8.5)$ OR $(4m+34)(m-8.5)$ OR $(4m-34)(m+8.5)$. Mark final answer. Penalise -1 further work, esolving an equation.	e.g.
11. 13200 × 460 ÷ 3 M1 Or equivalent.	
= 2024000 (cm ³) = 2.024(m ³) A1 B1 Strict FT of a correct conversion of their volume m ³ .	me to
Alternative method	
Sight of 1.32 AND 4.6 B1 1.32×4.6÷3 M1 FT 'their 1.32' and 'their 4.6' from place value	e errors
$= 2.024(m^3)$ A1 for M1A1.	

	1	
12. $x^2 - 4 = 0$ $x = 1, x = -\frac{3}{2}$ $x = 2, x = -2$		
$x = 1, x = \frac{3}{2}$ $x = \frac{4}{9}$ $x = -1, x = -\frac{2}{3}$	B1	3 rd box
$(x-1)(2x-3) = 0$ $x = -\frac{2}{3}, x = -\frac{2}{3}$ $x = \frac{3}{2}, x = -\frac{2}{3}$ $x = 1, x = -\frac{2}{3}$	B1	7 th box
$x = -\frac{9}{4}$	B1	9 th box
$(2x-3)(2x+3) = 0$ $x = 0, x = \frac{2}{3}$ $x = \frac{81}{16}$ $x = 0, x = -\frac{2}{2}$ $x = \frac{2}{3}$	B1	12 th box
$(4x+9)^2 = 0 x = -\frac{9}{4}, x = 0$		
13. $\frac{26.5 - 1.95}{0.815} \text{ or } \frac{24.55}{0.815}$	M2	If many attempts are offered without a method/answer being identified then mark final attempt. Award M1 for correct use of values 26.5 ≤ a < 27, 1.9 < b ≤ 1.95 and 0.81 < c ≤ 0.815. OR award M1 for use of 2 of the 3 correct limits.
= 30(.12)	A1	Mark final answer. Only award A1 if M2 gained. If no marks gained award SC1 for an unsupported answer of 30.12(). Unsupported 30 or 30.1 gains no marks.
14. AB = $(191/360) \times 2 \times \pi \times 3.1$ =10.3(cm)	M1 A1	Sight of correct work to calculate major arc AB. Accept an answer in the range 10.2(cm) to 10.4(cm).
		Allow in terms of π , e.g. $\frac{5921}{1800}\pi$. Mark final answer. SC1 for 9.1(cm) to 9.2(cm), the minor arc AB. Must be convincing from $169/360 \times 2 \times \pi \times 3.1$.
15. Sight of $22x - 26 - 21x + 35$ or equivalent.	B2	Award B1 for sight of $2(11x - 13) - 7(3x - 5)$ OR
Denominator of $(3x-5)(11x-13)$	B1	three of the four terms correct. Must be seen or stated as the denominator.
$\frac{x+9}{}$ or $\frac{x+9}{}$	B1	CAO. Mark final answer.
$\frac{(3x-5)(11x-13)}{(3x^2-94x+65)}$	N40	Assert M4 for D/Dod/syD/Dod/s 0.4000 are
$16. \qquad \frac{n}{200} \times \frac{n}{200} = 0.1369$	M2	Award M1 for P(Red)×P(Red)=0.1369 or equivalent, $P(x, y) = P(x, y) = 0.1369 P^{2} = 0.1369 P^{$
$(n^2 =) 200 \times 200 \times 0.1369$	m1	e.g. R(ed)×R(ed)=0.1369; P^2 =0.1369, etc. Where n is the number of red beads.
OR $(n =)\sqrt{200 \times 200 \times 0.1369}$	A1	
(Number of red beads=) 74	L ^ !	

Alternative method		
$\overline{P(Red)\times P(Red)=0}$. 1369 or equivalent,	M1	e.g. $R(ed) \times R(ed) = 0.1369$; $P^2 = 0.1369$, etc.
$(P(Red) =) \sqrt{0.1369} (= 0.37)$	m1	
(Number of red beads=) $\sqrt{0.1369} \times 200$	m1	
= 74	A1	If an answer 74/200 is offered award M3A0, but '74 out of 200' gains full marks.
17. $6x^2 - 22x + 15x - 55$ (= 7)	B1	
$6x^2 - 7x - 62 = 0$	B1	CAO. '= 0' may be implied in further working.
$(x =) \frac{-(-7)\pm\sqrt{(-7)^2-4\times6\times(-62)}}{2\times6}$ $= \frac{7\pm\sqrt{1537}}{12}$	M1 A1	FT 'their derived quadratic equation' set to zero and of equivalent level of difficulty $(a, b \text{ and } c \text{ are non-zero})$. Allow one slip in substitution, but must be correct formula. If one slip seen award A0.
x = 3.85 AND $x = -2.68$ (answers to 2dp)	A1	CAO for 'their equation'. Note: no marks to be awarded for 1 correct solution from trial and improvement.
18.		
For sight of $gc^2 - v = c^2$	B1	
$c^{2}(g-1) = v \text{ OR } gc^{2} - c^{2} = v \text{ OR } -v = c^{2} - gc^{2}$	B1	FT a formula with three or more terms AND with at least two terms in c^2 .
$c^2 = \frac{v}{g-1} \text{OR} \frac{-v}{1-g} = c^2$	B1	FT until 2 nd error for equivalent level of difficulty.
$c = (\pm) \sqrt{\frac{v}{g-1}} OR (\pm) \sqrt{\frac{-v}{1-g}}$	B1	

19.(a) $(AE^2 =) 8^2 + 11^2 - 2 \times 8 \times 11 \times \cos 31^\circ$	M1	
(AE =) 5.8(cm)	A2	Award A2 for an answer of 6(cm) from correct
		working. A1 for (AE ² =) 34.1()
19.(b) sin CAE= <u>8 × sin 31°</u>	M2	FT 'their AE' from 19(a). Check the diagram.
5.8()	1412	M1 for $\frac{\sin CAE}{\sin 31^{\circ}}$ or equivalent
, ,		8 5.8()
(CAE=) 44.8(°)	A1	Accept answers in the range 44.7° to 45.3°.
(CED=) 44.8(°)	B1	Strict FT of 'their CAE', provided not 31°. Must be
(0=2)()		convincing (check the diagram).
		Accept answers in the range 44.7° to 45.3°.
Alternative method 1		
11 ² +5.8() ² -8 ²	M2	FT 'their AE' from 19(a). Check the diagram.
$\cos(CAE) = \frac{11^2 + 5.8()^2 - 8^2}{2 \times 11 \times 5.8()}$		M1 for
		$8^2 = 11^2 + 5.8()^2 - 2 \times 11 \times 5.8() \times cos(CAE)$
(CAE=) 44.8(°)	A1	Accept answers in the range 44.7° to 45.3°.
(CED=) 44.8(°)	B1	Strict FT of 'their CAE', provided not 31°. Must be
(CED-) 44.0()		convincing (check the diagram).
		Accept answers in the range 44.7° to 45.3°.
Alternative method 2 (Initially evaluating CEA)		
sin CEA= 11 × sin 31° OR	M2	FT 'their AE' from 19(a). Check the diagram.
$sin CEA = \frac{11 \times sin 31^{\circ}}{5.8()} OR$		M1 for $\underline{\sin CEA} = \underline{\sin 31^{\circ}}$ or equivalent OR
054 504 12 62 442		11 5.8()
$\cos CEA = \frac{5.8()^2 + 8^2 - 11^2}{2 \times 5.8() \times 8}$		M1 for
2×3.0(/×0		$11^2 = 5.8()^2 + 8^2 - 2 \times 5.8() 2 \times 8 \times \cos CEA$
(CEA=) 104.1() [or 75.8() from sine rule]	A1	Accept answers in the range 103.7 to 104.3 or 75.7
		to 77.7 OR 78.
(CAE=) 180-31-75.8()= 73.2() or		
180-31-104.1()= 44.8()		
(OED-) 44.0() at 72.0()	D4	Strict FT of 'their CAE', provided not 31°. Must be
(CED=) 44.8() or 73.2()	B1	convincing (check the diagram). Accept answers in the range 44.7° to 45.3°.
	1	7.000pt anomoro in the range 44.7 to 40.0.