шјес
cbac

GCSE MARKING SCHEME

AUTUMN 2017

GCSE
MATHEMATICS
UNIT 1 - HIGHER TIER 3300U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2017 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE MATHEMATICS Unit 1 : Higher Tier Autumn 2017 Final Marking Scheme	Mark	Comments
1.(a) Kite	B1	
1.(b) Trapezium	B1	
1.(c) Rhombus	B1	
2.(a) -3	B1	
Scale on y-axis ' 2 cm square $\equiv 5$ units' OR ' 2 cm square $\equiv 4$ units'.	B1	B0 for '2cm square $\equiv 10$ units'.
At least 5 correct plots and no incorrect plot.	P1	F.T. 'their $(-1,-3)$ ' AND 'their uniform scale' if possible.
A smooth curve drawn through their plots.	C1	Allow $\pm 1 / 2$ a small square'. F.T. 'their 6 plots' OR a curve through the 5 given plots and $(-1,-3)$. Allow for the intention to pass through their plots. (± 1 small square horizontal OR vertical).
2.(b) $\quad \mathrm{y}=\mathrm{x}^{2}+3$	B1	
3.(a) Correct rotation.	B2	Allow B1 for two correct vertices. B1 for a 90° clockwise rotation about $(-2,3)$ OR B1 for a 90° anticlockwise rotation about $(3,-2)$.
3.(b) Correct enlargement.	B2	Allow B1 for two correct vertices. B1 for an enlargement of scale factor $1 / 2$ but not centred at (0,0). Must be in the correct orientation. SC1 for a correct enlargement using a scale factor of $-1 / 2$ centred at $(0,0)$.

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
4.
\[
\begin{array}{r}
(\text { RQP or } Q R P=) \frac{180-30}{2}=75\left({ }^{\circ}\right)
\end{array}
\] \\
Tangents (from external point) are equal (in length) OR a geometric consequence based on this fact e.g. 'QPR is isosceles' or 'PQOR is a kite'.
\[
(\mathrm{OQR}=90-75=) \quad 15\left({ }^{\circ}\right)
\] \\
Tangent and radius (at any point) are perpendicular
\end{tabular} \& M1
A1
E1

B1
E1

W1

OC1 \& | Note: Both E1 marks are awarded for a |
| :--- |
| suitable/valid attempt at statement (not an implied reason from a calculation). |
| Both E marks are dependent on attempt at related work. |
| Look for angles seen on the diagram. |
| For this question allow angles shown in diagram to take precedence over answer space. |
| Accept any suitable attempt at a valid statement. Allow $\mathrm{PQ}=\mathrm{PR}$. Also allow unambiguous indication on the diagram. |
| 'Angles in a triangle' not sufficient. |
| F.T. 'their derived 75 ' provided acute. |
| Accept any suitable attempt at a valid statement. |
| Also allow unambiguous indication on the diagram. |
| Tangents (from external point) are equal (in length) OR a geometric consequence based on this fact e.g. 'QPR is isosceles' or 'PQOR is a kite'. E1 $(O Q R=90-75=) 15\left(^{\circ}\right)$ |
| F.T. 'their derived 75' provided acute |
| Tangent and radius (at any point) are perpendicular. |
| [Note: Do not 'mix and match' marks from alternative methods.] |
| Organisation and Communication. |
| For OC1, candidates will be expected to: |
| - present their response in a structured way |
| - explain to the reader what they are doing at each step of their response |
| - lay out their explanation and working in a way that is clear and logical |
| Accuracy of writing. |
| For W1, candidates will be expected to: |
| - show all their working |
| - make few, if any, errors in spelling, punctuation and grammar |
| - use correct mathematical form in their working |
| - use appropriate terminology, units, etc |

\hline
\end{tabular}

Note: Both E1 marks are awarded for a suitable/valid attempt at statement (not an implied reason from a calculation).
Both E marks are dependent on attempt at related work.
Look for angles seen on the diagram. take precedence over answer space.

B1
E1
Accept any suitable attempt at a valid statement. Also allow unambiguous indication on the diagram.

Alternative method 1
(ROQ $=360-90-90-30 \Rightarrow 150\left(^{\circ}\right) \quad B 1$
Tangent and radius (at any point) are perpendicular. E1
$O Q R=\frac{180-150}{2} \quad$ M1
$=15\left(^{\circ}\right) \quad A 1$
Radii form an isosceles triangle. E1
Alternative method 2 (with line OP drawn)

$$
(P O Q \text { or } R Q P=) 180-90-15 \quad \text { M1 }
$$

Tangents (from external point) are equal (in length) OR a geometric consequence based on this fact e.g. ' $Q P R$ is isosceles' or ' $P Q O R$ is a kite'. E1 (OQR = 90-75 =) 15(${ }^{\circ}$) B1
F.T. 'their derived 75' provided acute

Tangent and radius (at any point) are perpendicular.
[Note: Do not 'mix and match' marks from alternative methods.]

Organisation and Communication.
For OC1, candidates will be expected to:

- present their response in a structured way
- explain to the reader what they are doing at each step of their response
- lay out their explanation and working in a way that is clear and logical

Accuracy of writing.
For W1, candidates will be expected to:

- show all their working
- make few, if any, errors in spelling, punctuation and grammar
- use correct mathematical form in their working
- use appropriate terminology, units, etc

\begin{tabular}{|c|c|c|}
\hline 5.(a) \(4.2 \times 10^{-4}\) \& B1 \& \\
\hline 5.(b) \(3.6 \times 10^{8}\) \& B1 \& \\
\hline 5.(c) \(4.08 \times 10^{5}\) \& B2 \& \begin{tabular}{l}
B1 for sight of any correct value but not in standard form. \\
e.g. \(40.8 \times 10^{4}\) or 408000 .
\end{tabular} \\
\hline \begin{tabular}{l}
6. Arc, centre P, intersecting \(A B\) at two points. (B may be one of the points with no arc seen at point B) \\
Intersecting arcs (equal radii) using the above two points as centres. \\
Line drawn
\end{tabular} \& M1 \& \begin{tabular}{l}
[Note to markers: These arcs may be identified by the fact that they will 'cross the line \(A B\) at an acute angle'. Arcs 'crossing the line at \(90^{\circ}\) ' is evidence of an inappropriate method.] \\
M 1 and m 1 must be gained before A 1 is awarded. \\
Alternative method \\
Using the properties of a kite. Intersecting arcs whose centres are any two points on the line \(A B\) and respective radii equal in length to the distance from the points to the point \(P\). \\
M2 \\
[Note to markers: The arcs will always intersect at a point that is a 'reflection of point \(P\) ' in the line \(A B\).] \\
Line drawn \\
A1
\end{tabular} \\
\hline \begin{tabular}{l}
7. \\
5 AND 3 AND 0 in correct position. Total of 9 for 'Reciting'. Total of 22 for 'Singing'. \\
(Probability only took part in 'Singing')
\[
=\frac{15}{29} \mathrm{ISW}
\]
\end{tabular} \& B1
B1
B1

B2 \& | Allow empty space to imply 0. |
| :--- |
| C.A.O. |
| 15/29 gains all 5 marks. Otherwise, strict F.T. from 'their diagram'. |
| B1 for a correct numerator in a fraction <1. |
| B1 for a correct denominator in a fraction <1. |
| Penalise - 1 if incorrect notation used for probability e.g. '15 out of 29'. |

\hline
\end{tabular}

8. $\quad(x-9)(x+2)$ $(x=) 9 \quad \text { AND } \quad(x=)-2$	$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{~B} 1 \end{aligned}$	B1 for ($x \ldots 9$) ($x \ldots 2$). Strict F.T. from their brackets. Penalise change of letter -1 . If no factorising shown, allow the following. B2 for $x-9(=0)$ AND $x+2(=0)$ $(x=) 9 \quad$ AND $\quad(x=)-2$ B1 for $x+9(=0)$ AND $x-2(=0)$ $(x=)-9 \quad$ AND $\quad(x=) 2$ (B1) FT B1 if only $(x=) 9 \quad$ AND $\quad(x=)-2$ seen. (B1)
9. Method to eliminate variable e.g. equal coefficients with appropriate addition or subtraction. First variable found, $x=31 / 2$ or $y=4$. Substitute to find the $2^{\text {nd }}$ variable. Second variable found	M1 A1 m1 A1	No marks for trial and improvement. Allow 1 error in one term, not one with equal coefficients. C.A.O. F.T. their ' 1 st variable'.
10. (Volume of cube $=$) m^{3} OR $\mathrm{m} \times \mathrm{m} \times \mathrm{m}$ (Volume of cylinder $=) \frac{\pi m^{3}}{4}$ OR $\frac{\pi \times m \times m \times m}{4}$ OR $\frac{\pi \times m^{2} \times m}{4}$ $k=4$	B1	For sight of m^{3} or equivalent. For sight of $\pi m^{3} / 4$ or equivalent. B1 for $\pi \times\left(\frac{m}{2}\right)^{2} \times m$. Also allow this B1 if brackets are missing. $\mathrm{m}^{3}: \frac{\pi m^{3}}{4} \text { OR } 4 \mathrm{~m}^{3}: \pi m^{3} \text { OR } 1: \frac{\pi}{4}$ all imply B1B2. Allow B1 if left as $4: \pi$. F.T. only for $\mathrm{mm}^{3} / 2$ (giving $k=2$ or $2: \pi$) Note : If a value is used for m then mark as above and penalise -1 from total mark gained.

11. $y \geq-2$ or equivalent $y \leq 3 x+1 \quad$ or equivalent	$\begin{aligned} & \hline \text { B1 } \\ & \text { B2 } \end{aligned}$	Accept '>' Accept ' $<$ '. B1 for $y=3 x+1$ or $y>3 x+1$ or $y \geq 3 x+1$ B1 for $y \leq k x+1$ or $y<k x+1$ (with $k \neq 3$ and $k>0$) B1 for $y \leq 3 x+c$ or $y<3 x+c$ (with $c \neq 1$)
12. (a) (Total area $=) x^{2}+(x+3)^{2}$ or equivalent $\begin{array}{r} x^{2}+x^{2}+3 x+3 x+9 \\ 2 x^{2}+6 x+9=22.5 \\ 4 x^{2}+12 x-27=0 \end{array}$	B1 M1 A1 A1	Allow award of B1 if brackets are omitted F.T. for equivalent difficulty i.e. from $x^{2}+(a x+b)^{2}$ with $a, b \neq 0$. Equating to zero and doubling. Must be convincing.
12. (b) $(2 x-3)(2 x+9)=0$ $x=3 / 2[\text { or } x=-9 / 2]$	B2 B1	$\text { B1 for }(2 x \ldots 3)(2 x \ldots 9)$ FT from 'their two brackets'. (If both F.T. solutions are of the same sign, then both are required for this B1.) Ignore presence or absence of $x=-9 / 2$. Alternative method (using quadratic formula): $x=\left[-12 \pm \sqrt{ }\left(12^{2}-4 \times 4 \times-27\right)\right] /(2 \times 4)$ Allow one error, in sign or substitution, but not in the formula. $\begin{array}{lrl} x=[-12 \pm \sqrt{ } 576] / 8 & \text { C.A.O. } & \text { A1 } \\ x=3 / 2 \text { [or } x=-9 / 2] & \text { C.A.O. } & A 1 \end{array}$
(Dimensions are) $3 / 2(\mathrm{~cm})$ and $(3 / 2+3=) 9 / 2(\mathrm{~cm})$	B1	F.T. 'their derived x '.
Explanation that x cannot be $-9 / 2(\mathrm{~cm})$ because a length cannot be negative (or must be positive).	E1	F.T. provided one solution is positive and the other is negative.

18. $y=f(x+4)$	B1	
19. (a) $\begin{aligned} & \text { (a) } 2 / 6 \times 3 / 5+3 / 6 \times 2 / 5 \\ & \text { OR } 2 \times 2 / 6 \times 3 / 5 \text { OR } 2 \times 3 / 6 \times 2 / 5 \\ & 12 / 30(=2 / 5) \end{aligned}$	M2 A1	$\mathrm{P}(3,4$ or 4,3$)$. M1 for sight of $2 / 6 \times 3 / 5$ or sight of $3 / 6 \times 2 / 5$. CAO. Mark final answer If no marks gained, award SC1 for method 'with replacement' leading to $12 / 36(=1 / 3)$ Alternative method A list of the 30 possible ordered pairs (permutations) with the correct 12 identified OR a list of the 15 possible pairs (combinations) with the correct 6 identified OR a 6×6 two-way table with diagonal deleted to leave 30 spaces with the correct 12 identified M2 (otherwise M1 for a sample space of 30, or M1 for identifying the correct 6 combinations or the correct 12 ordered pairs (permutations))

\begin{tabular}{|c|c|c|}
\hline (b) Strategy of finding P (even, even) and P(odd, odd)
$$
4 / 6 \times 3 / 5+2 / 6 \times 1 / 5
$$
$$
14 / 30(=7 / 15)
$$ \& S1
M2

A1 \& | F.T. consistent use of incorrect total number of cards. |
| :--- |
| Or equivalent |
| e.g. $P(2,4)+P(4,2)+P(3,3)+P(4,4)$ |
| or e.g. $1-\mathrm{P}$ (sum is odd) |
| OR |
| M2 for $1 / 6 \times 3 / 5+3 / 6 \times 1 / 5+2 / 6 \times 1 / 5+3 / 6 \times 2 / 5$ |
| OR |
| M2 for $1-(4 / 6 \times 2 / 5+2 / 6 \times 4 / 5)$ |
| M1 for sight of $4 / 6 \times 3 / 5$ or sight of $2 / 6 \times 1 / 5$ |
| OR |
| M1 for sight of two of the following products |
| $1 / 6 \times 3 / 5, \quad 3 / 6 \times 1 / 5, \quad 2 / 6 \times 1 / 5, \quad 3 / 6 \times 2 / 5$ |
| OR |
| M1 for sight of $4 / 6 \times 2 / 5$ or sight of $2 / 6 \times 4 / 5$ |
| CAO. Mark final answer. |
| If no marks gained, award S1 SC1 for method 'with replacement' leading to 20/36 (= $=5 / 9$) |
| Alternative method |
| Strategy of finding $P($ even, even) and $P($ odd, odd) or equivalent e.g. $P(2,4)+P(4,2)+P(3,3)+P(4,4)$ or e.g. 1 - P(sum is odd) S1 (If a strategy is not explicitly stated, S1 may be awarded retrospectively for sight of a correct probability) |
| A list of the 30 possible ordered pairs (permutations) with the correct 14 identified OR a list of the 15 possible pairs (combinations) with the correct 7 identified |
| e.g. as (2, 4), (2, 4), (2, 4), (3, 3), (4, 4), (4, 4), (4, 4) OR a 6×6 two-way table with diagonal deleted to leave 30 spaces with the correct 14 identified M2 |
| (otherwise M1 for a sample space of 30, or M1 for identifying the correct 7 combinations or the correct 14 ordered pairs (permutations)) |
| 14/30 (= 7/15) CAO |

\hline
\end{tabular}

