Surname
Other Names

Centre Number

Candidate Number
0

n
 шјес cbac

GCSE

MATHEMATICS
UNIT 1: NON-CALCULATOR
FOUNDATION TIER
FRIDAY, 10 NOVEMBER 2017 - MORNING
1 hour 30 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space, use the continuation page at the back of the booklet. Question numbers must be given for all work written on the continuation page.
Take π as 3.14 .

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
In question 9, the assessment will take into account the quality of your linguistic and mathematical organisation, communication and accuracy in writing.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	2	
2.	4	
3.	3	
4.	3	
5.	3	
6.	2	
7.	2	
8.	3	
9.	5	
10.	3	
11.	4	
12.	6	
13.	3	
14.	4	
15.	3	
16.	1	
17.	9	
18.	5	
Total	65	

Formula List - Foundation Tier

Area of trapezium $=\frac{1}{2}(a+b) h$

1. Each of these circles has its centre marked with • .
(a) Draw a diameter of this circle.

(b) Draw a tangent to this circle.

2. Write a number in each space to make these calculations correct.
(a)
$325+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
(b)

…… $-17=140$

(c)
$80 \div \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
(d) $0.6 \times 100=$

Space for working:

3. Sam has a box with 30 coloured cards in it. He chooses one card from the box at random.
(a) There is an even chance that Sam chooses a red card.

How many red cards are there in Sam's box?
(b) It is impossible for Sam to choose a yellow card.
(b) It is impossible for Sam to choose a yellow card.
(c) It is unlikely that Sam chooses a blue card.
4. (a) Write down the mode of these numbers.

$$
\begin{array}{llllllll}
64 & 54 & 65 & 45 & 54 & 84 & 66 & 85
\end{array}
$$

> What is the smallest number of blue cards that Sam could have in his box?
\qquad

64	54	65	45	54	84	66	85

$$
\text { Mode }=
$$

\qquad
(b) Write down the median of these numbers.

16	13	20	25	18	22	17	27	24

Median $=$ \qquad
5. (a) What fraction of the following diagram is shaded?

Write your answer in its simplest form.

(b) Shade 40% of the following diagram.

6. (a) The number 43728 is to be written correct to the nearest thousand. Circle the correct answer.
(b) One of these numbers is both a square number and a factor of 63 . Circle the correct answer.

3
21
9
16
7
7. Work out the size of angle y.

\qquad。
Diagram not drawn to scale
8. (a) Shade exactly two squares so that $A B$ is the only line of symmetry for this diagram. [1]

(b) Shade exactly one square so that $C D$ is the only line of symmetry for this diagram. [1]

(c) Shade exactly two more squares so that this diagram still has rotational symmetry of order 2.

9. In this question, you will be assessed on the quality of your organisation, communication and accuracy in writing.

Rectangle A measures 25 cm by 8 cm .
Rectangle B is five times as long and five times as wide as rectangle A.
What is the perimeter of rectangle B ?
You must show all your working.

10. (a) On the diagram, mark the point A with a cross so that:

- $X \widehat{Y A}=63^{\circ}$, and
- $Y A=7.2 \mathrm{~cm}$.

(b) Using a protractor, find the size of angle a.

> (a)
11. Match each equation with its solution.

The first one has been done for you.

Space for working:
12. Calculate each of the following.
(a) $3^{4} \times 10^{3}$
(b) $5 \cdot 6-3.82$
\qquad
\qquad
\qquad
\qquad
(c) $\frac{5}{6}-\frac{2}{3}$
\qquad
\qquad
\qquad
\qquad
(d) 0.2×0.3
13. Circle either TRUE or FALSE for each of the following statements.

The expression $g \times g \times g$ can be written as $3 g$	TRUE	FALSE
The expression $7 y-y$ can be written as 7	TRUE	FALSE
$\frac{a}{4} \div a=\frac{1}{4}$	TRUE	FALSE
$\frac{a}{2}+\frac{a}{2}=a$	TRUE	FALSE
When$a=1, b=2$ and $c=3$, $a+b+c=a b c$	TRUE	FALSE

Space for working:
14. The two cuboids shown below have equal volumes.

15. A fraction is written as $\frac{a}{b}$.

- The fraction is a multiple of $0 \cdot 2$.
- The fraction is greater than $\frac{1}{2}$.
- The fraction is less than 75%.

Write down the fraction as $\frac{a}{b}$, where a and b are whole numbers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer =
16. Expand $5(3 x-2)$.
17. Sara is in charge of a game at her school's Christmas party.

Two fair spinners are spun as shown in the example below.

1st Spinner

2nd Spinner

People can make a two-digit number using the numbers shown on the spinners using the following rule:

Multiply the number on the first spinner by 10 and then add the number on the second spinner.

One example, as shown above, makes the number 21 , because $2 \times 10+1=21$.
(a) How many different numbers can be made playing this game?
\qquad
\qquad
\qquad
(b) Write down all the prime numbers that can be made playing this game.
\qquad
\qquad
\qquad
(c) What is the probability that a person makes a prime number when playing the game once?
(d) Sara charges each person £1 to play the game once.

Each player who makes a prime number from their spins wins $£ 2$.
How much profit would the school expect to make when 180 people play the game?
18. $A B C D$ is a quadrilateral. $A \widehat{B C}=93^{\circ}, B \widehat{C D}=122^{\circ}$ and $A \widehat{D} C=85^{\circ}$.
Points P and Q lie on the quadrilateral as shown, such that $A P=A Q$.
Prove that triangle $A P Q$ is an equilateral triangle.
You must show all your working.

Diagram not drawn to scale

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

$\begin{aligned} & \hline \text { Question } \\ & \text { number } \\ & \hline \end{aligned}$	Additional page, if required. Write the question number(s) in the left-hand margin.

