Surname
Other Names

Centre Number

Candidate Number
0

GCSE

wjec cbac

3300U50-1

||| ||
A17-3300U50-1

MATHEMATICS
 UNIT 1: NON-CALCULATOR
 HIGHER TIER

FRIDAY, 10 NOVEMBER 2017 - MORNING
1 hour 45 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, a protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space use the continuation page at the back of the booklet. Question numbers must be given for all work written on the continuation page.
Take π as $3 \cdot 14$.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
In question 4, the assessment will take into account the quality of your linguistic and mathematical organisation and communication.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	3	
2.	5	
3.	4	
4.	7	
5.	4	
6.	3	
7.	5	
8.	3	
9.	4	
10.	4	
11.	3	
12.	9	
13.	5	
14.	2	
15.	4	
16.	3	
17.	4	
18.	1	
19.	7	
Total	80	

Formula List - Higher Tier

Area of trapezium $=\frac{1}{2}(a+b) h$

Volume of prism $=$ area of cross-section \times length

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$
Area of triangle $=\frac{1}{2} a b \sin C$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$ are given by $\quad x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Annual Equivalent Rate (AER)

AER, as a decimal, is calculated using the formula $\left(1+\frac{i}{n}\right)^{n}-1$, where i is the nominal interest rate per annum as a decimal and n is the number of compounding periods per annum.

1. Look at the following descriptions of special quadrilateral shapes. Circle the correct name for each one.
(a) Its diagonals intersect at 90°.

Only one diagonal is a line of symmetry.
Kite
Rhombus
Square
Trapezium
Rectangle
(b) Only one pair of sides are parallel.

Kite Rhombus Square Trapezium Rectangle
(c) All four sides are equal.

Its diagonals are not equal in length.
Kite Rhombus Square Trapezium Rectangle
2. (a) Complete the table below.

Draw the graph of $y=2 x^{2}-5$ for values of x between -2 and 3 . Use the graph paper below. Choose a suitable scale for the y-axis.

x	-2	-1	0	1	2	3
$y=2 x^{2}-5$	3		-5	-3	3	13

The sketch above can represent only one of the equations given below. Circle this equation.

$$
y=x^{2} \quad y=x^{2}-3 \quad y=-x^{2} \quad y=x^{2}+3 \quad y=3 x
$$

3. (a) Rotate triangle A through 90° anticlockwise, about the point $(-2,3)$.
(b) Enlarge triangle B by a scale factor of $\frac{1}{2}$, using $(0,0)$ as the centre of enlargement.

4. In this question you will be assessed on the quality of your organisation, communication and accuracy in writing.
$P Q$ and $P R$ are tangents to a circle with centre O.
$R \widehat{P Q}=30^{\circ}$.

Diagram not drawn to scale
Find the size of $O \widehat{Q R}$.
You must indicate any angles you calculate.
You must give a reason for each stage of your working.
\qquad
5. (a) Express 0.00042 in standard form.

Examiner
(b) Calculate the value of $\frac{7.2 \times 10^{6}}{2 \times 10^{-2}}$.

Give your answer in standard form.

\qquad
(c) Calculate the value of $\left(4.7 \times 10^{5}\right)-\left(6.2 \times 10^{4}\right)$. Give your answer in standard form.
\qquad
6. Using only a ruler and a pair of compasses, construct a perpendicular line from the point P to the line $A B$.

7. A group of pupils from a school took part in The Urdd National Eisteddfod.

All of them competed in at least one of the following competitions: Singing, Dancing or Reciting.

- 2 of them only took part in a Dancing competition.
- 5 only took part in a Reciting competition.
- No one took part in both a Reciting and a Dancing competition.
- 3 took part in both a Singing and a Dancing competition.
- 9 took part in a Reciting competition.
- 22 took part in a Singing competition.

The Venn diagram below shows some of the above information.
The universal set, ε, contains all of the pupils in the group.
One of the pupils in the group is chosen at random.
What is the probability that this person only took part in a Singing competition?

8. Factorise $x^{2}-7 x-18$, and hence solve $x^{2}-7 x-18=0$.
\qquad
9. Solve the following simultaneous equations using an algebraic (not graphical) method.

$$
\begin{aligned}
& 4 x-3 y=2 \\
& 6 x-5 y=1
\end{aligned}
$$

10. A cylinder just fits inside a hollow cube with sides of length $m \mathrm{~cm}$.

Diagram not drawn to scale

The radius of the cylinder is $\frac{m}{2} \mathrm{~cm}$.
The height of the cylinder is $m \mathrm{~cm}$.
The ratio of the volume of the cube to the volume of the cylinder is given by volume of cube : volume of cylinder

$$
=k: \pi \text {, }
$$

where k is a number.
Find the value of k.
You must show all your working.
\qquad
\qquad
\qquad
\qquad
\qquad
11.

12. Two different squares are constructed. The side length of the smaller square is $x \mathrm{~cm}$.
The side length of the larger square is 3 cm longer than the side length of the smaller square. The combined area of the two squares is $22.5 \mathrm{~cm}^{2}$.
(a) Show that $4 x^{2}+12 x-27=0$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Find the dimensions of each of the squares. Do not use a trial and improvement method.
You must show all your working and justify any decision that you make.

Side length of smaller square $=$ cm

Side length of larger square $=$ cm
13. Given that y is inversely proportional to x^{3} and that $y=120$ when $x=2$,
(a) find an expression for y in terms of x,
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) use the expression you found in part (a) to complete the following table.

x	2	10	
y	120		15

(a) find an expresion for y in terms of x, \square
14. The two triangles shown below are not drawn to scale.

Which one of the following statements is correct? Give full reasons for your answer.

A: the triangles must be congruent
B: the triangles could be congruent
C: the triangles cannot be congruent

The correct statement is \qquad
This is because
\qquad
\qquad
15. (a) Express $0.6 \dot{4} \dot{2}$ as a fraction.
(b) Evaluate $\left(\frac{1}{36}\right)^{-\frac{1}{2}}$.
16. You are given that $p=\sqrt{40}$ and $q=\sqrt{10}$. Circle the correct answer in each of the following:
(a) p is equal to
$10 \sqrt{4}$
$4 \sqrt{10}$
$10 \sqrt{2}$
$2 \sqrt{10}$ 20
(b) $p q$ is equal to
$10 \sqrt{40}$
$40 \sqrt{10}$
400
200
20
(c) q^{5} is equal to
$100 \sqrt{10}$
$5 \sqrt{10}$
$\sqrt{50}$
625
$10 \sqrt{100}$
\qquad
\qquad
\qquad
\qquad
\qquad
17. Simplify $\frac{12 x+16}{9 x^{2}-16}$.
18. The following diagram shows a sketch of the curve $y=f(x)$.

The curve is transformed, as shown below.

Using function notation, complete the following to give the equation of the transformed curve.

The equation of the transformed curve is

$$
y=
$$

\qquad

Two of the cards shown above are selected at random, without being replaced.
Find the probability that
(a) the product of the two numbers selected is 12,
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) the sum of the two numbers selected is even.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

