GCSE Maths
Oxford Revise GCSE Maths, Higher tier

Home-learning Pack: NUMBER

THIS PACK CONTAINS pages from the Higher Revision Workbook in the Oxford Revise series. It covers all the 'Number' topics within the GCSE Maths Higher tier specification. The full ebook can be accessed free at this link. The print title can be found on Amazon at this link. Comparable write-in Workbooks are available for both Edexcel and AQA Foundation and Higher GCSE Maths.

CONTENTS

Calculations 1
Rounding \& truncation $\underline{2}$
Estimation 3
Error intervals \& bounds 4
Adding \& subtracting fractions 5
Multiplying \& dividing fractions 6
Fractions, decimals \& percentages 7
Recurring decimals 8
Surds $\underline{9}$
Index notation 10
Prime factor decomposition 11
Finding HCF and LCM 12
Standard form 13
Calculating with standard form 14
Guided answers

Edexcel GCSE (9-1)

Maths

Higher

Revision Workbook

Authors: Jemma Sherwood and Paul Hunt Series Editor: Naomi Bartholomew-Millar

The Oxford Revise GCSE Maths Series:
 Our approach

Our no-fuss approach lets you dive straight into the practice you need for the exam. GCSE Grades help you monitor your own progress on every page, and 'Guided answers' at the back help you mark your own solutions. The practice exam papers come with guidance too: for every question we let you know which page to turn to for extra practice. And you'll find perfectly matched support on the exact same page in the revision guide.

Calculations

1. Work out

a) 25.043-17.82
\qquad / 2 marks]
b) 7.4×0.26
[__/2 marks]
c) $17.12 \div 0.8$
[__/2 marks]
2. Work out
a) $(12-4 \times 2)^{3}$
[__/ 1 mark]
b) $\frac{4 \times 5^{2}}{4 \times 5 \div 2}$
[__/ 1 mark]
c) $5 \sqrt{50-1}+6 \times 3$
[__/ 1 mark]
d) $5+(-3.2) \times 4$
[__/ 1 mark]
e) $(1-0.1) \times 4-(-10)$
[__/ 2 marks]
f) $\frac{(-0.2) \times(-6)}{-1+0.7}$
[__/ 2 marks]
3. Supermarket A sells a pack of six vegan burgers for $£ 4.65$

Supermarket B sells a pack of eight for $£ 6.59$
Which supermarket is better value? Show your working.
4. Marina's fence measures 1.4 m by 10.5 m . It costs $£ 0.60$ to paint the fence per square metre. How much does it cost to paint the fence in total?

Rounding \& truncation

3

1. Round 20193 to
a) 4 significant figures
[I got__/ 1 mark]
b) 3 significant figures
[__/ 1 mark]
c) 2 significant figures
[_ / / 1 mark]
d) 1 significant figure.
[__/ 1 mark]
2. Round 0.006802 to
a) 1 significant figure

Hint

b) 2 significant figures
[__/ 1 mark]
c) 3 significant figures.
[__/ 1 mark]
3. a) Calculate $\frac{1}{3}(0.02 \times 11.9)^{2}$. Write all the figures on your calculator display.
[__/ 1 mark]
b) Write your answer to part a
i) truncated to 2 decimal places
[__/ 1 mark]
ii) rounded to 2 significant figures.
[__/ 1 mark]
4. One bag of grass seed covers an area of $3.66 \mathrm{~m}^{2}$ and costs $£ 4.99$. Fabio needs grass seed for a lawn of $32 \mathrm{~m}^{2}$. How much will the grass seed cost Fabio? Give your answer to the nearest pound.
$£$
[/ 3 marks]
5. Shirley rounds 0.06529 to 2 significant figures and gives the answer 0.07 . Shirley is wrong. Explain why.

Hint

Think about the difference between significant figures and decimal places.

Estimation

1. Estimate the value of $\frac{317+48.6}{9.683}$. Show your working.

Hint

Always round numbers before calculating.
[l got \qquad / 2 marks]
2. Estimate the value of $\frac{2.67 \times 1.36}{0.11+0.42}$. Show your working.
\qquad / 2 marks]
3. A biologist visits a lake at the start of January and works out that the number of fish in the lake is approximately 1000 . She thinks that the population is growing at a rate of 17 fish per day. Estimate how many fish there will be in the lake five months later.
\qquad / 3 marks]
4. In one week, an Italian restaurant sells 96 portions of lasagne. The restaurant sells a portion of lasagne for $£ 8.95$ and each portion costs $£ 3.20$ to make. Estimate the profit the restaurant makes from lasagne in the week.
5. James is driving to visit his Gran who lives 405 km away. He leaves at 8.30 am and drives at an average speed of $77 \mathrm{~km} / \mathrm{h}$, stopping for a 25 -minute lunch break on the way. Estimate the time he arrives at his Gran's.
6. Giving your answers to 1 decimal place, estimate the value of
a) $\sqrt{47}$
\qquad / 1 mark]
b) $\sqrt{200}$

Error intervals \& bounds

5 1. The length, $p \mathrm{~m}$, of a football pitch is given as 110 m .
Write the error interval for p if this value is rounded to
a) the nearest 10 metres

$$
\leq p<
$$

[I got \qquad
b) the nearest 5 metres.

$$
\leq p<
$$

[__/ 2 marks]
2. A number, x, is given rounded to a particular degree of accuracy. Write the error interval for x in each case.
a) $x=4.67$ to 2 decimal places

$$
\leq x<
$$

[__/2 marks]
b) $x=5000$ to 1 significant figure.

$$
\leq x<
$$

[__/2 marks]
3. A number, y, is given truncated. Write the error interval for y.
a) $y=9$ truncated to an integer

$$
\leq y<
$$

[__/2 marks]
b) $y=2.5$ truncated to 1 decimal place

$$
\leq y<
$$

[__/2 marks]
4. Sienna uses her calculator to answer a question. The display breaks and she can only see 1.8 at the start of her answer. Let x be the unknown number on the display and write the range of possible values for x as an error interval.

Hint Remember your inequalities.
5. The side length of a square is given as 15 cm to the nearest centimetre. Work out the error interval for the area, $x \mathrm{~cm}^{2}$, of the square.
\qquad / 3 marks]
6. A car travels on the motorway at a speed of $110 \mathrm{~km} / \mathrm{h}$ to 3 significant figures, for a distance of 45 km , correct to the nearest kilometre. By considering bounds, work out the time taken in hours to travel this distance to an appropriate degree of accuracy. Give a reason for your answer.

Adding \& subtracting fractions

1. Work out and simplify where possible
a) $\frac{2}{9}+\frac{5}{6}$
[I got \qquad / 2 marks]
b) $3 \frac{1}{6}-2 \frac{3}{4}$
[/ 3 marks]
2. $\frac{1}{8}$ of the students in a class drive to school. $\frac{2}{3}$ of the students walk to school. The rest take the bus. What fraction of the students take the bus?

Hint

The whole class is represented by the number 1
\qquad / 3 marks]
3. Daisy is building a model train track. Her track is $2 \frac{4}{5} \mathrm{~m}$ long. She then takes out a piece of track which is $\frac{7}{8} \mathrm{~m}$ long and replaces it with a piece which is $1 \frac{1}{20} \mathrm{~m}$ long. Work out the length of her track now.
\qquad / 3 marks]
4. Maxwell is reading a book on his e-reader. When he picks it up one day, it tells him he is $\frac{1}{3}$ of the way through the book. He reads some and when he puts it down he is $\frac{3}{4}$ of the way through. What fraction of the book did he read?

Hint

Add together the whole number parts and then add together the fraction parts.

\qquad / 3 marks]

Multiplying \& dividing fractions

1. A café uses up $\frac{2}{3}$ of a box of coffee beans every day. How many days will it take for it to use up 16 boxes of coffee beans?
[I got \qquad / 2 marks]
2. Work out and simplify where possible.
a) $1 \frac{1}{2} \times 3 \frac{5}{6}$
[l got \qquad / 3 marks]
b) $4 \frac{4}{9} \div 2 \frac{2}{3}$
[__ / 3 marks]
3. Rafael reserves $\frac{3}{10}$ of his monthly wage to pay his bills. $\frac{1}{4}$ of this amount is spent on his electricity bill.

Hint

What calculation does the word 'of' represent?
What fraction of his monthly wage does Rafael spend on his electricity bill?
4. A triangle has base $1 \frac{1}{5} \mathrm{~cm}$ and height $\frac{6}{5} \mathrm{~cm}$. A rectangle has the same area as the triangle. If the width of the rectangle is $\frac{2}{5} \mathrm{~cm}$, what is its length, $x \mathrm{~cm}$? Give your answer in its simplest form.

Hint

This question combines fractions and geometry. Find the area of the triangle. What is the same about both shapes?
5. Vasiliki has a piece of material $3 \frac{3}{4} \mathrm{~m}$ long.

She is cutting it into smaller pieces of length $\frac{5}{6} \mathrm{~m}$.

Hint

You need to divide fractions here.

How many smaller pieces can she get, and what fraction of a metre will be left over?

Number of small pieces $=$ \qquad Fraction left $=$ \qquad

Fractions, decimals \& percentages

1. In Lin's class, 6 out of 25 children read fantasy books. In Jay's class, 8 out of 32 children read fantasy books. Lin says the proportion of children who read fantasy books is greater in her class than in Jay's. Is Lin correct? Explain your answer.
2. Sally says that multiplying by 0.01 is the same as dividing by 100. Is Sally correct? Explain your reasoning.
[__/ 1 mark]
3. Explain, using prime factors, why $\frac{11}{28}$ is a recurring decimal.

\qquad
\qquad
4. Jonathan ran some park races last year. 15% of his races were 5 km runs, $\frac{7}{10}$ of his races were 10 km runs and the rest were half marathons. If he ran 20 races in total, how many were half marathons?
\qquad
5. In a city, 5.5 out of every 22 square metres are used for housing and services. If housing takes up $\frac{5}{8}$ of this space, what percentage of the total area is used for services?

Recurring decimals

1. Express these fractions as decimals.
a) $\frac{1}{18}$
\qquad / 2 marks]
b) $\frac{20}{33}$
[__/2 marks]
c) $\frac{3}{7}$
[__/ 2 marks]

7
2. Prove algebraically that $0 . \dot{5}=\frac{5}{9}$

Hint
Let $x=0.5$ and find $10 x$
3. Write $0 . \dot{8} \dot{4}$ as a fraction in its simplest form.
4. Prove algebraically that $0.0 \dot{5} \dot{6}=\frac{28}{495}$

Surds

1. Write these expressions in the form $a \sqrt{2}$, where a is an integer.
a) $\sqrt{18}-\sqrt{8}$
b) $\sqrt{200}+\sqrt{72}-\sqrt{98}$
c) $3 \sqrt{2}+7 \sqrt{32}$
[__/2 marks]
d) $\frac{14}{\sqrt{2}}$
[__/2 marks]
2. Write these expressions in the form $a+b \sqrt{3}$, where a and b are integers.
a) $(1+\sqrt{3})^{2}$
[/ 2 marks]
b) $\frac{8}{2-\sqrt{3}}$

Hint

Multiply numerator and denominator by the denominator with a changed sign.
c) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$
\qquad / 3 marks]
3. Show that $(\sqrt{11}-\sqrt{8})(\sqrt{11}+\sqrt{8})=3$
\qquad

Index notation

(Grate 1. Peter says that $2^{3} \times 5^{2}$ simplifies to 10^{5}. Peter is wrong. Explain why.
[I got \qquad / 1 mark]
2. Simplify $\frac{\left(2^{7} \times 2^{4}\right)^{-1}}{2}$ fully and leave your answer in index form.

Hint

A power of -1 gives the reciprocal and a power of $\frac{1}{n}$ gives the nth root.
[/ 2 marks]
3. Write in simplified index form
a) $\left(3^{\frac{1}{4}}\right)^{\frac{1}{4}}$
[__/ 1 mark]
b) $\sqrt[3]{5^{2}}$
[
_/ 2 marks]
4. Work out
a) $\left(\frac{2}{5}\right)^{3}$
b) $25^{\frac{1}{2}}$
[__/ 1 mark]
c) $8^{\frac{2}{3}}$
[__/2 marks]
d) $\left(\frac{16}{9}\right)^{-\frac{3}{2}}$
[__/ 3 marks]
5. $3 \times \sqrt{27}=3^{n}$

Find the value of n
6. $2^{x} \times 2^{y}=64$ and $2^{x} \div 2^{y}=4$

Find the values of x and y

Hint

Start by finding two simultaneous equations.

Prime factor decomposition

1. Write 110 as a product of its prime factors.
[I got \qquad / 2 marks]
2. a) Write 540 as a product of powers of its prime factors.

\qquad / 2 marks]
b) By looking at its prime factors, explain why 540 is divisible by 15
3. a) Write 750 as a product of its prime factors. Give your answer in index notation.

Finding HCF and ICMM

Grade 1. a) Write 160 as a product of prime factors.
[l got \qquad / 2 marks]
b) Find the highest common factor of 160 and 280
[__ / 2 marks]
c) Find the lowest common multiple of 160 and 280
[__ / 2 marks]
5
2. Two numbers have prime factor decompositions $2^{3} \times 5 \times 11$ and $2 \times 3^{2} \times 5$

Find
a) the highest common factor of the two numbers
[__/2 marks]
b) the lowest common multiple of the two numbers.
[
/ 1 mark]
3. Fran is sorting her books into piles. She has 225 yellow books and 324 orange books. She does not want to mix the colours and wants every pile to contain the same number of books. Work out the biggest number of books she can put in each pile.
[__ / 3 marks]
4. Two numbers, A and B, have prime factor decompositions $A=2 \times 3 \times 7 \times x$ and $B=2^{2} \times 5^{2}$

The highest common factor of the two numbers is 4
a) Work out the value of x.

Hint

How does the HCF relate to the prime factor decomposition?
b) Work out the value of the number A.

Standard form

1. Write these as ordinary numbers.
a) 1.56×10^{8}
[I got \qquad
b) 8.02×10^{-3}
[__/ 1 mark]
3
2. Write these numbers in standard form.
a) 48000000000
[__/ 1 mark]
b) 0.0000703
[__/ 1 mark]
c) 95×10^{6}
[__/ 1 mark]
d) 0.68×10^{-4}
[__/ 1 mark]
3. The distance from the Sun to Earth is approximately 150000000 km . Write this number in standard form.
4. Put these numbers in order of size, starting with the biggest.
2.1×10^{4}
2.3×10^{5}
0.21×10^{4}
2200

Hint

Write all the numbers in the same form.
\qquad
5. The size of a bacteria cell is $4 \times 10^{-7} \mathrm{~m}$ and the size of a virus is 0.00000005 m . Which is smaller, the bacteria cell or the virus? Show your working.
6. Here are the populations of four countries.

Angola: $31.8 \times 10^{6} \quad$ Uzbekistan: $3.29 \times 10^{7} \quad$ Malaysia: 31.9 million Mongolia: 3.2×10^{6} Which country has the largest population? Show your working.

Calculating with standard form

1. Work out the value of each expression, giving your answers in standard form.
a) $\left(5 \times 10^{4}\right)+\left(6 \times 10^{5}\right)$
\qquad / 2 marks]
b) $\left(9 \times 10^{-3}\right)-\left(3 \times 10^{-4}\right)$
c) $\left(2.1 \times 10^{8}\right) \times\left(3 \times 10^{-5}\right)$
d) $\left(8.2 \times 10^{3}\right) \div\left(4.1 \times 10^{7}\right)$
2. The MiG 25 fighter jet can fly at $4 \times 10^{3} \mathrm{~km} / \mathrm{h}$. How long would it take to travel a distance of 3000 km? Give your answer in minutes.

$$
\begin{aligned}
& \text { Hint } \\
& \text { Remember that } \\
& \text { speed }=\frac{\text { distance }}{\text { time }} \\
& \text { [__ / } 3 \text { marks }]
\end{aligned}
$$

minutes
3. A region on a map forms the shape of a rectangle with width $1.2 \times 10^{2} \mathrm{~km}$ and length $7 \times 10^{3} \mathrm{~km}$. Work out the area of this region in standard form.
4. The circumference of Earth is $4.0075 \times 10^{9} \mathrm{~cm}$. The circumference of another planet is 0.2 times the circumference of Earth.
a) Work out an estimate for the circumference of this planet. Give your answer in standard form.

Hint

Start by rounding the circumference of Earth.
b) Is your answer in part a an underestimate or an overestimate? Explain your answer.
\qquad / 1 mark]

Guided answers

Page 1, Calculations

1. a \quad| 14.14 |
| :--- | $\mathbf{1} .043$

$-\frac{17.820}{7.223}$
1 mark for lining up the digits correctly in columns;
1 mark for the correct answer.
b $\quad 74$
$\begin{array}{r}\times 26 \\ 444 \\ +1480 \\ \hline 1924\end{array}$
Since $74 \times 26=1924$,
$7.4 \times 0.26=1924 \div 10 \div 100=1.924$
1 mark for multiplying 74×26 to get 1924; $\mathbf{1}$ mark for the correct answer.
c $17.12 \div 0.8=171.2 \div 8$
21.4
$817^{1} 1 . .^{3} 2$
$171.2 \div 8=21.4$
1 mark for dividing 171.2 by 8; 1 mark for the correct answer.
2. a $(12-4 \times 2)^{3}=(12-8)^{3}=4^{3}=64$

1 mark for correct answer.
b $\frac{4 \times 5^{2}}{4 \times 5 \div 2}=\frac{4 \times 25}{10}=\frac{100}{10}=10$
1 mark for correct answer.

$$
\text { c } \begin{aligned}
5 \sqrt{50-1}+6 \times 3 & =5 \times \sqrt{49}+6 \times 3=5 \times 7+6 \times 3 \\
& =35+18=53
\end{aligned}
$$

1 mark for correct answer.
d $5+(-3.2) \times 4=5+(-12.8)=-7.8$
1 mark for correct answer.
e $(1-0.1) \times 4-(-10)=0.9 \times 4-(-10)=3.6-(-10)$

$$
=13.6
$$

1 mark for 3.6; 1 mark for the correct answer.
f $\frac{(-0.2) \times(-6)}{-1+0.7}=\frac{1.2}{-0.3}=-4$
1 mark for either 1.2 in the numerator or - 0.3 in the denominator; 1 mark for the correct answer.
3. Supermarket A : $£ 4.65 \div 6=£ 0.775$ per burger

Supermarket B: $£ 6.59 \div 8=£ 0.82375$ per burger $0.775<0.82375$
Therefore, Supermarket A is better value.
$\mathbf{1}$ mark for 0.775; $\mathbf{1}$ mark for 0.82375; $\mathbf{1}$ mark for correct conclusion with full justification. Total 3 marks.
4. Area of fence $=1.4 \times 10.5=14.7 \mathrm{~m}^{2}$

Cost $=14.7 \times 0.6=£ 8.82$
1 mark for multiplying lengths; 1 mark for multiplying by cost per square metre; 1 mark for correct answer. Total 3 marks.

Page 2, Rounding \& truncation

1. a 20190
b 20200
c 20000
d 20000
1 mark for each correct answer.
2. a 0.007
b 0.0068
c 0.00680
1 mark for each correct answer.
3. a $21.568361 .$.
b i 22
ii 21.5

1 mark for each correct answer.
3. a $0.0188813 .$.
b i 0.01
ii 0.019

1 mark for each correct answer.
4. $32 \div 3.66=8.743 \ldots$

He can only buy whole bags, so round up to the next integer: 9 bags.
Total cost $=9 \times 4.99=£ 44.91$

$$
=£ 45 \text { to the nearest pound }
$$

1 mark for correct division; 1 mark for rounding up and multiplying by $£ 4.99$; 1 mark for correct answer. Total 3 marks.
5. Shirley has rounded 0.06529 to 2 dp instead of 2 sf . The correct answer is 0.065
1 mark for a correct explanation.

Page 3, Estimation

1. $\frac{317+48.6}{9.683} \approx \frac{300+50}{10} \approx \frac{350}{10} \approx 35$

1 mark for rounding to 1 sf; 1 mark for correct answer.
2. $\frac{2.67 \times 1.36}{0.11+0.42} \approx \frac{3 \times 1}{0.1+0.4} \approx \frac{3}{0.5} \approx 6$

1 mark for rounding to 1 sf; $\mathbf{1}$ mark for correct answer.
3. Number of fish at start of January ≈ 1000

Increase ≈ 20 fish per day
Five months $\approx 5 \times 30 \approx 150$ days
Number of fish after five months $\approx 150 \times 20+1000 \approx 4000$
1 mark for rounding rate of increase to 1 sf; 1 mark for correct calculation for the number of fish after five months; 1 mark for correct answer. Total 3 marks.
4. Number of portions sold ≈ 100

Sale price per portion $\approx £ 9.00$
Cost per portion $\approx £ 3.00$
Profit per portion $\approx £ 9.00-£ 3.00 \approx £ 6.00$
Total profit $\approx £ 6.00 \times 100 \approx £ 600$
1 mark for rounding portions, sale price and cost to 1 sf; $\mathbf{1}$ mark for a profit calculation; $\mathbf{1}$ mark for correct answer. Total 3 marks.
Note that there are alternative methods.
5. Distance driven $\approx 400 \mathrm{~km}$

Average speed $\approx 80 \mathrm{~km} / \mathrm{h}$
Time driving $\approx \frac{400}{80} \approx 5$ hours
Time for whole journey ≈ 5 hours 30 minutes (including the break)
Time of arrival is roughly 2 pm (8.30 am $+5 \frac{1}{2}$ hours).
1 mark for rounding distance and speed to 1 sf; 1 mark for finding the time taken; $\mathbf{1}$ mark for correct answer. Total 3 marks.
6. a $\sqrt{36}<\sqrt{47}<\sqrt{49}$, so $6<\sqrt{47}<7$ $\sqrt{47}=6.9$ to 1 dp
1 mark for an answer of 6.8 or 6.9
b $\sqrt{196}<\sqrt{200}<\sqrt{225}$, so $14<\sqrt{200}<15$ $\sqrt{200}=14.1$ to 1 dp
1 mark for an answer of 14.1 or 14.2

Page 4, Error intervals \& bounds

1. a $105 \leq p<115$
b $107.5 \leq p<112.5$

1 mark for each correct minimum; 1 mark for each correct maximum.
2. a $4.665 \leq x<4.675$ b $4500 \leq x<5500$

1 mark for each correct minimum; $\mathbf{1}$ mark for each correct maximum.
3. a $9 \leq y<10$
b $2.5 \leq y<2.6$

1 mark for each correct minimum; 1 mark for each correct maximum.
4. Sienna can see a truncation to 1 dp so the error interval is $1.8 \leq x<1.9$
1 mark for correct minimum and maximum; 1 mark for correct interval notation.
5. Lower bound for the length is 14.5 cm , so lower bound for the area is $14.5^{2}=210.25 \mathrm{~cm}^{2}$.
Upper bound for the length is 15.5 cm , so upper bound for the area is $15.5^{2}=240.25 \mathrm{~cm}^{2}$.
Error interval for the area, $x \mathrm{~cm}^{2}$, is $210.25 \leq x<240.25$
$\mathbf{1}$ mark for 14.5^{2}; $\mathbf{1}$ mark for $15.5^{2} ; \mathbf{1}$ mark for correct error interval. Total 3 marks.
6. The error interval for the speed, $s \mathrm{~km} / \mathrm{h}$, is $109.5 \leq s<110.5$ The error interval for the distance, $d \mathrm{~km}$, is $44.5 \leq d<45.5$ The lower bound for the time taken is $\frac{44.5}{110.5}=0.4027 \ldots$ hours
The upper bound for the time taken is $\frac{45.5}{109.5}=0.4155 \ldots$ hours
Both of these answers round to 0.4 hours to 1 dp , so this is an appropriate degree of accuracy.
1 mark for upper and lower bounds for speed;
1 mark for upper and lower bounds for distance;
1 mark for lower bound for time; $\mathbf{1}$ mark for upper bound for time; 1 mark for correct answer. Total 5 marks.

Page 5, Adding \& subtracting fractions

1. a $\frac{2}{9}+\frac{5}{6}=\frac{4}{18}+\frac{15}{18}=\frac{19}{18}$ or $1 \frac{1}{18}$

1 mark for finding a common denominator; 1 mark for correct answer.
b $3 \frac{1}{6}-2 \frac{3}{4}=\frac{19}{6}-\frac{11}{4}=\frac{38}{12}-\frac{33}{12}=\frac{5}{12}$
1 mark for converting mixed numbers to improper fractions; 1 mark for finding a common denominator;
1 mark for correct answer. Total 3 marks.
2. $\frac{1}{8}+\frac{2}{3}=\frac{3+16}{24}=\frac{19}{24}$
$1-\frac{19}{24}=\frac{24}{24}-\frac{19}{24}=\frac{5}{24}$
1 mark for finding a common denominator of 24; 1 mark for adding to get $\frac{19}{24}$; $\mathbf{1}$ mark for correct answer. Total 3 marks.
3. $2 \frac{4}{5}-\frac{7}{8}+1 \frac{1}{20}=\frac{14}{5}-\frac{7}{8}+\frac{21}{20}=\frac{112}{40}-\frac{35}{40}+\frac{42}{40}=\frac{119}{40} \mathrm{~m}$ or $2 \frac{39}{40} \mathrm{~m}$

1 mark for converting mixed numbers to improper fractions; 1 mark for finding a common denominator; 1 mark for correct answer. Total 3 marks.
4. $\frac{3}{4}-\frac{1}{3}=\frac{9-4}{12}=\frac{5}{12}$

1 mark for finding a common denominator; 1 mark for correct answer.
5. Perimeter $=3 \frac{1}{2}+5 \frac{2}{5}+2 \frac{1}{5}$

$$
=3+5+2+\frac{1}{2}+\frac{2}{5}+\frac{1}{5}
$$

$$
\begin{aligned}
& =10+\frac{5}{10}+\frac{4}{10}+\frac{2}{10} \\
& =10+\frac{11}{10} \\
& =10+1 \frac{1}{10}=11 \frac{1}{10} \mathrm{~cm}
\end{aligned}
$$

1 mark for summing the lengths; 1 mark for finding common denominator; 1 mark for correct answer or equivalent. Total 3 marks.

Page 6, Multiplying \& dividing fractions

1. $16 \div \frac{2}{3}=\frac{16}{1} \times \frac{3}{2}=\frac{\stackrel{8}{6}_{16}^{1} \times 3}{1 \times 8}=\frac{8 \times 3}{1 \times 1}=\frac{24}{1}=24$ days

1 mark for writing a division and turning it into a correct multiplication; 1 mark for correct answer.
2. a $1 \frac{1}{2} \times 3 \frac{5}{6}=\frac{3}{2} \times \frac{23}{6}=\frac{\frac{1}{2} \times 23}{2 \times \frac{6}{2}}=\frac{1 \times 23}{2 \times 2}=\frac{23}{4}=5 \frac{3}{4}$

1 mark for converting to improper fractions; 1 mark for multiplying; 1 mark for correct answer. Accept correct improper fraction or mixed number. Total 3 marks.
b $4 \frac{4}{9} \div 2 \frac{2}{3}=\frac{40}{9} \div \frac{8}{3}=\frac{40}{9} \times \frac{3}{8}=\frac{5^{5} 0 \times \frac{1}{4}}{2 \times 8}=\frac{5 \times 1}{3 \times 1}=\frac{5}{3}=1 \frac{2}{3}$
1 mark for converting to improper fractions; 1 mark for writing a correct multiplication; 1 mark for correct, simplified answer (improper fraction or mixed number). Total 3 marks.
3. $\frac{1}{4}$ of $\frac{3}{10}=\frac{1}{4} \times \frac{3}{10}=\frac{3}{40}$

1 mark for multiplying; 1 mark for correct answer.
4. Area of triangle $=\frac{1}{2} \times 1 \frac{1}{5} \times \frac{6}{5}=\frac{1}{2} \times \frac{6}{5} \times \frac{6}{5}=\frac{18}{25} \mathrm{~cm}^{2}$

This is the area of the rectangle.
Length of rectangle $=\frac{18}{25} \div \frac{2}{5}=\frac{18}{25} \times \frac{5}{2}=\frac{\stackrel{9}{18} \times \frac{1}{5}}{25} \times \frac{1}{5}$

$$
=\frac{9 \times 1}{5 \times 1}=\frac{9}{5} \mathrm{~cm} \text { or } 1 \frac{4}{5} \mathrm{~cm}
$$

1 mark for writing a correct multiplication; 1 mark for writing a division and turning into a correct multiplication; 1 mark for correct, simplified answer (improper fraction or mixed number). Total 3 marks.
5. $3 \frac{3}{4} \div \frac{5}{6}=\frac{15}{4} \div \frac{5}{6}=\frac{15}{4} \times \frac{6}{5}=\frac{90}{20}=\frac{9}{2}$ or $4 \frac{1}{2}$ or 4.5

Vasiliki can get 4 smaller pieces.
$\frac{1}{2} \times \frac{5}{6}=\frac{5}{12} \mathrm{~m}$ will be left over.
1 mark for converting to improper fraction and writing a correct multiplication; 1 mark for correct answer to the multiplication and identifying correct number of smaller pieces; 1 mark for correct fraction left over. Total 3 marks.

Page 7, Fractions, decimals \& percentages

1. Lin's class: $\frac{6}{25}=\frac{24}{100}=24 \%$

Jay's class: $\frac{8}{32}=\frac{1}{4}=\frac{25}{100}=25 \%$
Lin is not correct. Jay's class has a (slightly) higher proportion of students who read fantasy books. 1 mark for finding either 24% or 25% or for giving both fractions a common denominator; 1 mark for a complete, correct explanation.
2. Since $0.01=\frac{1}{100^{\prime}}$, multiplying by 0.01 is the same as multiplying by $\frac{1}{100}$, which makes the answer 100 times smaller, so it is equivalent to dividing by 100 . Sally is correct. 1 mark for a correct explanation.
3. $\frac{11}{28}=\frac{11}{2 \times 2 \times 7}$

If a fraction produces a terminating decimal, the prime factors in the denominator can only be 2 s or 5 s . This
fraction has a prime factor of 7 in the denominator, so it will produce a recurring decimal.
1 mark for the prime factor decomposition of 28; 1 mark for a correct explanation.
4. $\frac{7}{10}=70 \% ; 70 \%+15 \%=85 \% ; 100 \%-85 \%=15 \%$
15% of the runs were half marathons.
Since 15% of 20 is 3, Jonathan ran 3 half marathons.
1 mark for adding $\frac{7}{10}$ and 15% (either as percentages or fractions) and subtracting from 100\% (or 1); 1 mark for attempting to find 15\% of 20; 1 mark for the correct answer. Total 3 marks.
Note that there are alternative methods.
5. Area used for housing and services $=\frac{5.5}{22}=\frac{1}{4}$

Fraction of this area used for services $=1-\frac{5}{8}=\frac{3}{8}$
Total area used for services $=\frac{3}{8} \times \frac{1}{4}=\frac{3}{32}=9.375 \%$
1 mark for $\frac{3}{8}$; $\mathbf{1}$ mark for multiplying by $\frac{1}{4}$; $\mathbf{1}$ mark for correct answer as a percentage. Total 3 marks.

Page 8, Recurring decimals

0.05555

1. a $18 \times V^{1 Q^{10} 0^{10} 0^{10} 0^{10} 0} \quad \frac{1}{18}=0.05^{\circ}$
b $33 \begin{gathered}0.6060 \\ 2 Q .{ }^{20} 0^{2} O^{20} 0^{2} 0\end{gathered} \quad \frac{20}{33}=0 . \dot{6} \dot{0}$
0.4285714
c $7 \longdiv { 8 . 0 ^ { 3 } 0 ^ { 2 } 0 ^ { 6 } 0 ^ { 4 } 0 ^ { 5 } 0 ^ { 1 } 0 ^ { 3 } 0 } \quad \frac { 3 } { 7 } = 0 . \dot { 4 } 2 8 5 7 i$
For each part, $\mathbf{1}$ mark for division; $\mathbf{1}$ mark for the correct answer.
2. Let $x=0 . \dot{5}$

Then $10 x=5.5$
Subtracting x from $10 x$, you have $9 x=5$, so $x=\frac{5}{9}$
1 mark for finding x and $10 x$ and subtracting; 1 mark for the correct answer.
3. Let $x=0 . \dot{8} \dot{4}$

Then $100 x=84 . \dot{8} \dot{4}$
Subtracting x from 100x, you have $99 x=84$, so $x=\frac{84}{99}=\frac{28}{33}$
1 mark for finding x and 100x and subtracting; 1 mark for $\frac{84}{99} ; 1$ mark for the correct answer. Total 3 marks.
4. Let $x=0.05 \dot{\circ}$

Then $10 x=0.5 \dot{6}$
Also $1000 x=56.5 \dot{6}$
Subtracting 10x from 1000x, you have $990 x=56$, so $x=\frac{56}{990}=\frac{28}{495}$
1 mark for finding 10x and 1000x and subtracting; 1 mark for $\frac{56}{990^{\prime}} \mathbf{1} \mathbf{~ m a r k}$ for the correct answer. Total 3 marks.

Page 9, Surds

1. a $\sqrt{18}-\sqrt{8}=3 \sqrt{2}-2 \sqrt{2}=\sqrt{2}(a=1)$

1 mark for simplifying both surds; 1 mark for correct answer.
b $\sqrt{200}+\sqrt{72}-\sqrt{98}=10 \sqrt{2}+6 \sqrt{2}-7 \sqrt{2}=9 \sqrt{2}(a=9)$
1 mark for simplifying the three surds; $\mathbf{1}$ mark for correct answer.
c $3 \sqrt{2}+7 \sqrt{32}=3 \sqrt{2}+7 \times 4 \sqrt{2}=3 \sqrt{2}+28 \sqrt{2}=31 \sqrt{2}$ ($a=31$)
1 mark for simplifying $7 \sqrt{32}$; 1 mark for correct answer.
d $\frac{14}{\sqrt{2}}=\frac{14 \sqrt{2}}{2}=7 \sqrt{2}(a=7)$

1 mark for rationalising the denominator (multiplying numerator and denominator by $\sqrt{2}$); 1 mark for correct answer.
2. $\mathbf{a}(1+\sqrt{3})^{2}=(1+\sqrt{3})(1+\sqrt{3})=1+\sqrt{3}+\sqrt{3}+3=4+2 \sqrt{3}$ ($a=4, b=2$)
1 mark for expanding the brackets; 1 mark for simplifying expression to correct answer.
b $\frac{8}{2-\sqrt{3}}=\frac{8(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})}=\frac{16+8 \sqrt{3}}{4-3}=\frac{16+8 \sqrt{3}}{1}=16+8 \sqrt{3}$ ($a=16, b=8$)
1 mark for rationalising the denominator (multiplying numerator and denominator by $2+\sqrt{3}$); 1 mark for 1 in the denominator; 1 mark for the correct answer. Total 3 marks.
c $\frac{\sqrt{3}-1}{\sqrt{3}+1}=\frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)}=\frac{3-2 \sqrt{3}+1}{3-1}=\frac{4-2 \sqrt{3}}{2}=2-\sqrt{3}$ ($a=2, b=-1$)
1 mark for rationalising the denominator (multiplying numerator and denominator by $\sqrt{3}-1$); 1 mark for 2 in the denominator; 1 mark for the correct answer. Total 3 marks.
3. $(\sqrt{11}-\sqrt{8})(\sqrt{11}+\sqrt{8})=11+\sqrt{11} \sqrt{8}-\sqrt{11} \sqrt{8}-8$

$$
=11-8=3 \text { as required }
$$

1 mark for attempt to expand brackets; 1 mark for cancelling middle terms; 1 mark for fully correct working. Total 3 marks.

Page 10, Index notation

1. Peter has multiplied the bases. Since the bases are different, this cannot be simplified as a simple power of 10 1 mark for a correct explanation.
2. $\frac{\left(2^{7} \times 2^{4}\right)^{-1}}{2}=\frac{\left(2^{7+4}\right)^{-1}}{2}=\frac{\left(2^{11}\right)^{-1}}{2}=\frac{2^{11 \times(-1)}}{2}=2^{-11-1}=2^{-12}$

1 mark for 2^{11} in the brackets; 1 mark for correct answer.
3. a $\left(3^{\frac{1}{4}}\right)^{\frac{1}{4}}=3^{\frac{1}{4} \times \frac{1}{4}}=3^{\frac{1}{16}}$

1 mark for correct answer.
b $\sqrt[3]{5^{2}}=5^{\frac{2}{3}}$
1 mark for a fractional index with 3 in the denominator;
1 mark for the correct answer.
4. a $\left(\frac{2}{5}\right)^{3}=\frac{2^{3}}{5^{3}}=\frac{8}{125}$

1 mark for correct answer.
b $25^{\frac{1}{2}}=\sqrt{25}=5$
1 mark for correct answer.
c $8^{\frac{2}{3}}=(\sqrt[3]{8})^{2}=2^{2}=4$
1 mark for 2; 1 mark for correct answer.
d $\left(\frac{16}{9}\right)^{-\frac{3}{2}}=\left(\frac{9}{16}\right)^{\frac{3}{2}}=\left(\frac{\sqrt{9}}{\sqrt{16}}\right)^{3}=\left(\frac{3}{4}\right)^{3}=\frac{27}{64}$
$\mathbf{1}$ mark for $\frac{9}{16} ; \mathbf{1}$ mark for $\frac{3}{4} ; \mathbf{1}$ mark for correct answer.
Total 3 marks.
5. $3 \times \sqrt{27}=3 \times(27)^{\frac{1}{2}}=3 \times\left(3^{3}\right)^{\frac{1}{2}}=3^{1} \times 3^{\frac{3}{2}}=3^{1+\frac{3}{2}}=3^{\frac{5}{2}}$
$n=\frac{5}{2}$ or $2 \frac{1}{2}$ or 2.5
1 mark for attempting to rewrite 27 with base 3, 1 mark for $3^{\frac{3}{2}} ; 1$ mark for correct answer. Total 3 marks.
6. $64=2^{6}$
$2^{x} \times 2^{y}=2^{6} \Rightarrow x+y=6(1)$
$4=2^{2}$
$2^{x} \div 2^{y}=2^{2} \Rightarrow x-y=2(2)$
(1) $+(2): 2 x=8 \Rightarrow x=4$

Substitute into (1): $4+y=6 \Rightarrow y=2$
1 mark for attempting to rewrite 64 and 2 with base 2;
1 mark for either equation correct; 1 mark for attempting to solve simultaneously; $\mathbf{1}$ mark for correct values for x and y. Total 4 marks.

Page 11, Prime factor decomposition

You might use a factor tree in your working with the same start and end as shown here but with different middle branches.
1.

$110=2 \times 5 \times 11$
1 mark for finding or listing the prime factors; $\mathbf{1}$ for correct answer.
2. a

$540=2^{2} \times 3^{3} \times 5$
1 mark for finding or listing the prime factors; 1 mark for correct answer.
b Since $15=3 \times 5$ and both 3 and 5 are prime factors of 540 , then 540 must be divisible by 15
1 mark for a correct explanation.
3. a

$750=2 \times 3 \times 5^{3}$
1 mark for finding or listing the prime factors; 1 mark for correct answer.
b Since $4=2 \times 2$, but 750 only contains the factor of 2 once, 750 is not divisible by 4
1 mark for a correct explanation.
4. a $2 \times 3^{2} \times 7 \times 13$ is even since 2 is a prime factor.

1 mark for correct answer.
b To double a number, you multiply by 2, so the prime factor decomposition of a number twice as big will have another factor of 2 . This is $2^{2} \times 3^{2} \times 7 \times 13$
1 mark for correct answer.
5. The prime factors of each number are:
$4=2 \times 2 ; 5=5 ; 6=2 \times 3$
Any number divisible by 4,5 and 6 must have at least two 2 s, one 5 and a 3 , so the smallest such number is $2^{2} \times 3 \times 5$
1 mark for listing the prime factors of 4 and 6; 1 mark for correct answer.

Page 12, Finding HCF and ICM

1. a $160=2^{5} \times 5$

1 mark for finding or listing the prime factors; 1 mark for correct answer.
b $280=2^{3} \times 5 \times 7$
A Venn diagram to show the prime factors looks like this:

$\operatorname{HCF}(160,280)=2^{3} \times 5=40$
1 mark for multiplying the common factors; 1 mark for correct answer.
c From the Venn diagram,
$\operatorname{LCM}(160,280)=2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 7=1120$
1 mark for multiplying all appropriate factors; $\mathbf{1}$ mark for correct answer.
2.

a $\mathrm{HCF}=2 \times 5=10$
b LCM $=2 \times 2 \times 11 \times 2 \times 5 \times 3 \times 3=3960$
1 mark for correct Venn diagram or alternative method; 1 mark for HCF; 1 mark for LCM. Total 3 marks.
3. $225=3^{2} \times 5^{2}$
$324=2^{2} \times 3^{4}$
A Venn diagram would look like this:

The HCF of the two numbers is 9 , so Fran can sort her books into piles of a maximum of 9 if they are to be the same size.
1 mark for the prime factors of 225; 1 mark for the prime factors of 324; 1 mark for correct answer. Total 3 marks.
4. a You know that $4=2^{2}$ must divide into A, but $2 \times 3 \times 7$ only has one 2
Therefore, $x=2$
b $A=2 \times 2 \times 3 \times 7=84$
1 mark for each correct answer.

Page 13, Standard form

1. a $1.56 \times 10^{8}=156000000$
b $8.02 \times 10^{-3}=0.00802$
1 mark for each correct answer.
2. a $48000000000=4.8 \times 10^{10} \quad$ b $0.0000703=7.03 \times 10^{-5}$
c $95 \times 10^{6}=9.5 \times 10^{7}$ d $0.68 \times 10^{-4}=6.8 \times 10^{-5}$
1 mark for each correct answer.
3. $150000000 \mathrm{~km}=1.5 \times 10^{8} \mathrm{~km}$

1 mark for each correct answer.
4. Putting all the numbers in either standard or ordinary form:
$2.1 \times 10^{4}=21000 ; 2.3 \times 10^{5}=230000$;
$0.21 \times 10^{4}=2.1 \times 10^{3}=2100 ; 2200=2.2 \times 10^{3}$
The order, starting with the biggest, is $2.3 \times 10^{5}, 2.1 \times 10^{4}$, $2200,0.21 \times 10^{4}$

1 mark for converting at least two of the numbers correctly to an alternative form; $\mathbf{1}$ mark for any three in the correct order; 1 mark for all in the correct order. Total 3 marks.
5. Virus: $0.00000005=5 \times 10^{-8} \mathrm{~m}$

Bacteria cell: $4 \times 10^{-7}=0.0000004 \mathrm{~m}$
The virus is smaller.
$\mathbf{1}$ mark for getting both numbers in the same form; $\mathbf{1}$ mark for correct conclusion.
6. Put all the populations in the same form.

If you put them all in standard form, you have:
Angola: 3.18×10^{7}; Uzbekistan: 3.29×10^{7};
Malaysia: 3.19×10^{7}; Mongolia: 3.2×10^{6}
Uzbekistan has the biggest population.
1 mark for putting all numbers in the same form;
1 mark for correct answer.

Page 14, Calculating with standard form

1. a $\left(5 \times 10^{4}\right)+\left(6 \times 10^{5}\right)=50000+600000$

$$
=650000=6.5 \times 10^{5}
$$

1 mark for converting to ordinary numbers or the same power of 10; 1 mark for correct answer.
b $\left(9 \times 10^{-3}\right)-\left(3 \times 10^{-4}\right)=0.009-0.0003$

$$
=0.0087=8.7 \times 10^{-3}
$$

1 mark for converting to ordinary numbers or the same power of 10; 1 mark for correct answer.
c $\left(2.1 \times 10^{8}\right) \times\left(3 \times 10^{-5}\right)=6.3 \times 10^{8+(-5)}=6.3 \times 10^{3}$
1 mark for 103; $\mathbf{1}$ mark for correct answer.
d $\left(8.2 \times 10^{3}\right) \div\left(4.1 \times 10^{7}\right)=2 \times 10^{3-7}=2 \times 10^{-4}$
1 mark for 10^{-4}; $\mathbf{1}$ mark for correct answer.
2. Using time $=\frac{\text { distance }}{\text { speed }}$,

$$
\text { time }=\frac{3000}{4 \times 10^{3}}=\frac{3 \times 10^{3}}{4 \times 10^{3}}=\frac{3}{4} \text { hour }=45 \text { minutes }
$$

1 mark for dividing distance by speed; 1 mark for $\frac{3}{4}$ hour; 1 mark for correct answer in minutes. Total 3 marks.
3. Area $=\left(1.2 \times 10^{2}\right) \times\left(7 \times 10^{3}\right)=8.4 \times 10^{2+3}=8.4 \times 10^{5} \mathrm{~km}^{2}$ 1 mark for multiplying; $\mathbf{1}$ mark for 105; $\mathbf{1}$ mark for correct answer. Total 3 marks.
4. a Circumference $\approx 4 \times 10^{9} \times 0.2=0.8 \times 10^{9}=8 \times 10^{8} \mathrm{~cm}$

1 mark for rounding 4.0075; 1 mark for multiplication;
1 mark for correct answer in standard form. Total
3 marks.
b It is an underestimate because 4.0075 is rounded down.
1 mark for correct answer with explanation.

Page 15, Simplif ying expressions

1. a $3 p-5 q+3 p^{2}+2 q+2 q^{2}-9 p^{2}=3 p-3 q-6 p^{2}+2 q^{2}$ 1 mark for $-3 q$ and $-6 p^{2} ; 1$ mark for the correct answer.
b $5 x^{3}-2 x y-6+6 x^{3}-2-7 x y+8=11 x^{3}-9 x y$
1 mark for $11 x^{3}$ or $9 x y ; 1$ mark for the correct answer.
2. a Perimeter $=3 x+3 x+7 y+7 y=6 x+14 y$
$\mathbf{1}$ mark for an unsimplified expression; $\mathbf{1}$ mark for the correct answer.
b Area $=3 x \times 1.5 x=4.5 x^{2}$
1 mark for an unsimplified expression; $\mathbf{1}$ mark for the correct answer.
3. a $(2 a)^{3}=8 a^{3}$

1 mark for 8; 1 mark for a^{3}.
b $\left(5 a^{2} b^{3}\right)^{2}=25 a^{4} b^{6}$
1 mark for 25; 1 mark for $a^{4} b^{6}$.
c $\frac{6 x^{2} y^{-3}}{18 y x^{-1}}=\frac{1}{3} x^{3} y^{-4}$ or $\frac{x^{3}}{3 y^{4}}$
1 mark for $\frac{1}{3^{\prime}} \mathbf{1}$ mark for $x^{3} y^{-4}$ or $\frac{x^{3}}{y^{4}}$.
d $\sqrt{x^{4} y^{6}}=\left(x^{4} y^{6}\right)^{\frac{1}{2}}=x^{2} y^{3}$
1 mark for $x^{2} ; 1$ mark for y^{3}.
4. a $\frac{3^{-2} \times 3^{8}}{3^{7}}=\frac{3^{6}}{3^{7}}=3^{-1}$

$$
3^{-1}=3^{x}, \text { so } x=-1
$$

$\mathbf{1}$ mark for 3^{6} in the numerator; $\mathbf{1}$ mark for $3^{-1} ; \mathbf{1}$ mark for identifying that $x=-1$. Total 3 marks.
b $\quad 2^{5} \times 4^{2}=8^{x}$
$2^{5} \times\left(2^{2}\right)^{2}=\left(2^{3}\right)^{x}$
$2^{5} \times 2^{4}=2^{3 x}$

$$
2^{9}=2^{3 x}
$$

$3 x=9$, so $x=3$
1 mark for writing 4 as 2^{2} or 8 as $2^{3} ; 1$ mark for 2^{9} on the left-hand side; 1 mark for the correct answer. Total 3 marks.

Page 16, Solving linear equations

1 a $\frac{5-x}{2}=12 ; 5-x=24 ; 5=24+x ; x=-19$
1 mark for $5-x=24 ; 1$ mark for the correct answer.
b $\frac{2}{y}=5 ; 2=5 y ; y=\frac{2}{5}$
1 mark for $2=5 y ; 1$ mark for the correct answer.
c $3+p=4 p-6 ; 3+6=4 p-p ; 9=3 p ; p=3$
1 mark for $9=3 p ; 1$ mark for correct answer.
d $3(3-2 p)=4-11 p$
$9-6 p=4-11 p$
$-6 p+11 p=4-9$
$5 p=-5$
$p=\frac{-5}{5}=-1$
1 mark for $5 p=-5$; $\mathbf{1}$ mark for correct answer.
2. Sarah: n, Ewan: $n-5$, Cameron: $2 n$

Total: $n+(n-5)+2 n=35$

$$
4 n-5=35
$$

$4 n=40$
$n=10$, so Sarah plays 10 holes.
1 mark for $n-5$ and $2 n ; 1$ mark for adding and writing equal to 35; 1 mark for correct answer. Total 3 marks.
3. $2 x+3=3 x-4 ; 3+4=3 x-2 x ; 7=x$

Rosalind's number is 7
1 mark for a correct equation; $\mathbf{1}$ mark for a correct rearrangement; 1 mark for correct answer. Total 3 marks.
4. a $2 x-1=x+3 ; 2 x-x=3+1 ; x=4$

1 mark for a correct equation; 1 mark for a correct rearrangement; 1 mark for correct answer. Total 3 marks.
b If $x=4$, the shorter side is $x+3=4+3=7 \mathrm{~cm}$ (or $2 x-1=2 \times 4-1=7 \mathrm{~cm}$).
The perimeter is $7+7+y+y=14+2 y$.
Since $14+2 y=34,2 y=20, y=10$
This means the area of the rectangle is $10 \times 7=70 \mathrm{~cm}^{2}$.
1 mark for finding the length of the shorter side (7 cm);
1 mark for setting up an equation to find y; 1 mark for $y=10 ; 1$ mark for correct answer. Total 4 marks.

